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ABSTRACT 

This paper presents an efficient algorithm 

for generating triangle strips from triangulated 

meshes, providing a compact representation 

suitable for transmission and rendering of 

graphical 3D models used in games. The 

method is based on a simple heuristic that 

reduces the number of vertices used to describe 

the triangulated models. It also presents an 

evolutionary variation that produces better 

results every time the game is executed. 
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INTRODUCTION 

There is an abundant amount of geometry 

data in modern graphical 3D applications, 

especially in games. Geometry data is usually 

present as triangulated meshes due to the 

capabilities of video cards to manage this basic 

geometry form. However, video cards have 

memory limitations particularly with real-time 

games where thousands of triangles are needed 

to make surfaces look smooth. A common 

codification schema to handle this problem is 

called triangle strip (TS) [5], which 

enumerates a sequence of adjacent triangles to 

avoid repeating the vertexes shared by the 

same edge. This graphic primitive is supported 

by all video cards and is very fast and 

economic. 

This document discusses an algorithm that 

considerably reduces the amount of memory 

and time required to store and renders the 

geometry data, by converting triangular 

meshes into TS. The algorithm is based on the 

method presented in [3]. It also includes a new 

simple greedy heuristic and introduces an 

evolutionary variation with a cheaper pruning 

criterion to avoid unnecessary calculations. 

 

OVERVIEW 

After setting the first three vertices of the 

first triangle in a mesh, each new triangle is 

formed by joining a new vertex with the last 

two. For a four-triangle mesh, a triangle strip 

representation would be {ABCDEF} (6 

vertices) instead of the expensive 

representation {ABC, CBD, CDE, EDF} (12 

vertices) normally used as can be appreciated 

in Figure 1.  

 
Fig. 1: Four triangle mesh covered by 

one TS = {ABCDEF} 

 

The swapping 

To represent certain meshes in TS form, it 

is necessary to insert swaps. A swap is nothing 

B D 

C E 

F 

A 



but re-sending a previously enumerated vertex 

into the sequence. For instance, in the mesh of 

Figure 2, the vertices D and E can be swapped 

by inserting vertex D again into the sequence, 

thus in {ABCDEDFG} the re-sending of vertex 

D represent the swap. It’s worth to note that 

the swap introduces a new null (zero area) 

triangle but leaves a complete mesh 

representation. How many swaps can be 

introduced without affecting the performance 

in a significant way? Isn’t it better to split 

certain meshes in many TS instead of 

introducing null triangles? Is it possible to find 

an optimal representation of a mesh by cutting 

it into several TS? If not, how much can be 

improved with the compression rate of a mesh 

represented by triangle strips? 

 
Fig. 2: A swap is introduced to cover 

the mesh in one TS = {ABCDEDFG} 

 

PROBLEM 

Let’s propose a formal definition of the 

TS problem using a known concept. A dual 

graph G´of a given planar graph G has a 

vertex for each plane region of G, and an edge 

for each edge joining two neighboring regions 

[1], see Figure 3. The TS problem is analogous 

to find a Hamiltonian path for the dual graph 

of the mesh [3].  

 
Fig. 3: G′ is the dual graph of G 

Let M = { }nttt ,...,, 21 a set of triangles that 

define a mesh with ti = 

{ }Vvvvv i ∈|,, 321 where V is the set of all 

vertices of the mesh. Let’s call formally S, 

triangle strip of M, to a sequence of vertexes: 
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Then, the problem would be to find a set 

H of triangle strips that completely covers the 

mesh and minimizes the total number of 

vertices, thus:  
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where T(Si) is the set of triangles of the strip Si. 

 

The compression 

A triangulated mesh M = { }nttt ,...,, 21 can 

be described in the best case by one triangle 

strip S of length n + 2 without swaps; this 

doesn’t mean that it is always possible to attain 

it. The theoretical compression rate of planar 

meshes into TS can be defined based on the 

number of vertices that describe a triangulated 

mesh (3n) and the number of vertices 

necessary for the best case n + 2, thus: 
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In general, the compression rate for an 

arbitrary partition H of a mesh as triangle 

strips can be defined as:  

n
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where p is the total number of swaps for 

all strips in H and m is the total number of 

generated strips.  

The worst case is produced when there is a 

strip for each triangle (when m = n, p = 0) 

thus: 

0 ≤ μ ≤ 2/3 
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Where did the previous formula come 

from? When a swap is introduced into a strip it 

penalizes memory and speed with one vertex, 

unlike a strip whose penalty is two vertices.  

 

SOLUTION 

Let’s introduce two necessary concepts 

used by the algorithm: a triangle is referred to 

as free if it doesn’t belong to any strip, and the 

degree of a triangle is the number of free 

triangles adjacent to it and can change at each 

step of the algorithm.  

The algorithm starts by creating an empty 

set of strips H and follows as: set S as an 

empty set of vertices, select the lowest degree 

free triangle from the mesh and append its 

vertices to S. With the last two vertices of S, 

try to form a new triangle T with a third vertex 

V of the mesh; if T cannot be formed or it’s not 

free, then roll the last three vertices of S and 

try again. If after two rolls this triangle doesn’t 

exist then S is closed and appended to H, start 

forming a new S again.  

If the T is found then V is added to S and 

starts the second heuristic: using the last edge, 

formed by the last two vertices of S, and the 

third vertex V of the mesh, try to form a new 

free triangle T and append V to S, do this until 

T cannot be formed. Check whether there is 

another triangle T adjacent to the edge formed 

by the last and the one before; if it exists, then 

the swap is introduced by extracting the last 

vertex of S, re-sending the currently 

penultimate (previously the one before) and 

appending the extracted one. If even this 

triangle T doesn’t exist then close S, append it 

to H and start forming a new S again while 

there are still free triangles remaining. The 

figure below shows the result of the algorithm 

in a Quake 3 Arena game level.  

Fig. 4: Q3A game level with μ = 41.19% 

 

The algorithm takes into account the 

existence of an efficient proven data structure 

that models the dual graph with the adjacency 

information and supplies basic operations like 

finding the first free lowest degree triangle of 

the mesh; get the degree of a triangle, etc. The 

structure is updated on each step of the 

algorithm and keeps the list of triangles sorted 

by degree. The details of this structure are not 

relevant at this point.  

The pseudo-code is broken in two 

procedures: (1) a top level build for selecting 

the first triangle and strip direction, (2) a sub 

routine to sequence the strip with possible 

introduction of swaps based on the decision 

made in (1): 

 

Step 0: let H = ø the strip partition for the 

mesh, G the dual graph, S = ø the current strip 

Step 1: while exist free triangles in G do 

 Step 1.1: T = first free triangle available in G,  

 append T to S  

 Step 1.2: while not exist a free adjacency  

 triangle to T in G via its last edge do 

 Step 1.2.1: roll the three vertices of S 

 Step 1.2.2: if after two rolls the while  

 condition (1.2)  is still true, restore S to its 

initial status and go to Step 1.5 

 Step 1.3: let A the free adjacency triangle to T  

 in G encountered in previous iteration. Include  



 third vertex of A in S 

 Step 1.4: call sequence(S, A, G) 

 Step 1.5: append S to H, go to step 1 

Step 2: return H 

pseudo-code for build(): first triangle selection  

 

Step 0: let S the current strip, T the current 

triangle in S, G the dual graph, and fails = 0 

the number of fails seeking for adjacency 

triangles 

Step 1: check for a free adjacency triangle A to 

T in G via its last edge  

 Step 1.1: if it exists then include third vertex 

of  A in S, set T = A, fails = 0 

 Step 1.2: if it doesn’t exist: if fails = 0 then do  

 swapping else restore the strip from the last  

 swap. Set fails = fails + 1 

Step 2: if fails < 2 then go to step 1 

Step 3: return S 
pseudo-code for sequence(): strip sequencing 

 

RANDOMIZATION 

The algorithm described previously starts 

to sequence a strip for the “first lowest degree 

triangle”. However, it can happen that more 

than one triangle is the lowest degree free; the 

choice of the starting triangle can produce a 

different solution. The Figure 5 depicts this 

situation obtaining three possible solutions 
H1 = {(1, 2, 3, 4, 5, 4, 6, 4, 7, 8) , (11, 9, 10, 3, 5)} 

H2 = {(8, 7, 4, 6, 4, 5, 3, 10, 9, 11), (1, 2, 3, 4)} 

H3 = {(11, 9, 10, 3, 5, 4, 6, 4, 7, 8), (1, 2, 3, 4)} 

The solutions H2 and H3 are the better 

ones but not necessarily reached using a 

deterministic algorithm. The solution will be 

the same in every algorithm execution and the 

remaining ones will never be explored.  

 
Fig. 5: More than one triangle is the lowest 

degree free triangle 

 

The results of randomization of the first 

lowest degree free triangle selection, after 

several experiments show the existence of 

multiple better and worse solutions, as can be 

seen on the annexed histograms For instance, 

the game level displayed in Figure 4 reached 

over a 42% compression rate in the random 

version of the algorithm. 

The bell-like shapes of the samples that 

resulted from multiple program executions 

suggest a standard distribution (e.g. Gauss, 

Exponential) for the compression coefficient. 

But the tests did not produce such result in 

several cases. Therefore, we decided to ignore 

any possible standard distribution and always 

treat it as a sample distribution directly related 

to the complex topology of the mesh.  

 

EVOLUTION 

At this time, we focused on the task of 

designing an algorithm to determine the 

optimal stripping, without noting that we had 

the best scenario for making continuous 

experiments for computing it: video games.  

Our graphics engine for games allows for 

compressed triangulated surfaces, which 

composes our game levels/models into triangle 

strips. It is possible to get one compressed 
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solution for each surface of the level, but it is 

practically impossible to compute the 

optimized one for one of those meshes in a 

reasonable time. 

Why trying to compute the optimized 

stripping in a short time interval if we have all 

the time of live of our games to do it? While 

someone executes our games for playing, the 

engine can explore a different solution using 

randomized selection and improving its 

performance on each execution. Therefore all 

that is needed is a cheaper pruning criterion.  

Suppose that at least one solution was 

computed for an arbitrary mesh M with 

compression level µ* calculated from p* and 

m*. In the next game execution, on each new 

strip creation step, the state of the algorithm is 

characterized by p and m and a remaining set 

of free triangles. At this point the best case can 

be presented on which just one new strip 

without swaps is formed with all free triangles, 

leading to the new algorithm state (p, m + 1). 

If under such conditions the new compression 

level µ of the mesh is worst than the current 

best one µ* then the algorithm execution is 

stopped and the current solution is used, thus: 
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If the previous condition is never satisfied 

and the algorithm reaches to the end then a 

new better solution is found and stored. The 

additional storage space needed is very small 

in comparison with the size of the mesh, 

currently p*, m* and the list of indexes of the 

first selected triangles for each strip.  

The described algorithm is formally 

categorized as a random-restart hill climbing, a 

meta-algorithm that turns out that it’s often 

better to spend CPU time to explore the space, 

rather than optimizing from an initial 

condition. 

This evolutionary solution can also be 

used in multiplayer games and work in 

cooperative mode. Each time a multiplayer 

game session is created all players can share 

their best solution indicators p and m through 

the network. All these solutions are compared 

and the best one selected if there is one. The 

process of network replication of the best 

solution is not expensive at all in contrast with 

mesh sizes and can be done during game level 

loading time, with practically idle networking 

activity, which is also proportional to mesh 

sizes. The info needed to be transmitted is just 

the list of indexes of the first selected triangles 

for each strip.  

A new question arises: why don’t 

preprocess all game level meshes to compress 

it with optimal rates before the game release?  

 

Time to play 

Video game evolution recently brought 

the era of Massive Multiplayer Online Games 

(MMOGs). MMOGs exclusively emphasize 

multiplayer game play with thousands/millions 

of simultaneous players, huge scenes and 

worlds composed by millions of triangles. On 

the other hand, some MMOGs have no end 

condition that includes awarding a winner 

based on player’s behavior with the purpose of 

the player never stops to play.  

The preprocessing of one MMOG world 

with the intention of reach the optimal striping 

compression will require a long time and very 

expensive power of computing. Therefore a 

MMOG is the best scenario for execute this 

algorithm using the power of computing of 

those millions of users as long as be used in a 



correct manner without saturate the network 

and clients processors.  

 

CONCLUSIONS 

Both versions of the described algorithm 

were implemented in C++ language using the 

G3D library [2]. The results produced for the 

deterministic and evolutionary algorithm, after 

several iterations, are shown in the annexes.  

The use of both algorithms in video games 

can really improve the overall performance of 

games containing extensive geometric data. 

The memory overhead can be reduced in a 

significant way increasing the chance of 

including smoother surfaces and obtaining 

higher details on 3D models and game levels. 

The evolutionary version can be executed 

during model/level loading, ensuring that all 

processed data yield compression rates very 

close to the theoretical limit.  

A multiplayer game engine programmed 

with the evolutionary aspect, can achieve high 

levels of performance that grows in time as the 

game is played especially in MMOGs resulting 

in a drastically reduction of geometry data, 

load and render time. 
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ANNEXES 
 

Model Triangles Vertices Deterministic μ Evolutionary μ 
face 3186 1683 63.30% 64.73% 

grundy 12412 6208 61.70% 62.29% 
bunny 69491 34834 60.79% 60.91% 

roseburg 80423 40343 56.85% 56.93% 
Table 1: Compression levels for 4 models 
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a’) face histogram resulted after 1000 

experiments  
 

 
b’) grundy histogram resulted after 

1000 experiments  
 

 
c’) bunny histogram resulted after 500 

experiments  


