
AN EVOLUTIONARY MESH COMPRESSION

ALGORITHM FOR VIDEO GAMES

Eduardo Lago Aguilar

Igr Alexánder Fernández Saúco

~

Virtual Games Group, University of Informatics Sciences (UCi)

Havana City, Cuba

E-mail: {lago|alexanderfs}@uci.cu

ABSTRACT

This paper presents an efficient algorithm

for generating triangle strips from triangulated

meshes, providing a compact representation

suitable for transmission and rendering of

graphical 3D models used in games. The

method is based on a simple heuristic that

reduces the number of vertices used to describe

the triangulated models. It also presents an

evolutionary variation that produces better

results every time the game is executed.

KEYWORDS

Triangle strip, mesh, mesh compression,

rendering, randomization, evolutionary.

INTRODUCTION

There is an abundant amount of geometry

data in modern graphical 3D applications,

especially in games. Geometry data is usually

present as triangulated meshes due to the

capabilities of video cards to manage this basic

geometry form. However, video cards have

memory limitations particularly with real-time

games where thousands of triangles are needed

to make surfaces look smooth. A common

codification schema to handle this problem is

called triangle strip (TS) [5], which

enumerates a sequence of adjacent triangles to

avoid repeating the vertexes shared by the

same edge. This graphic primitive is supported

by all video cards and is very fast and

economic.

This document discusses an algorithm that

considerably reduces the amount of memory

and time required to store and renders the

geometry data, by converting triangular

meshes into TS. The algorithm is based on the

method presented in [3]. It also includes a new

simple greedy heuristic and introduces an

evolutionary variation with a cheaper pruning

criterion to avoid unnecessary calculations.

OVERVIEW

After setting the first three vertices of the

first triangle in a mesh, each new triangle is

formed by joining a new vertex with the last

two. For a four-triangle mesh, a triangle strip

representation would be {ABCDEF} (6

vertices) instead of the expensive

representation {ABC, CBD, CDE, EDF} (12

vertices) normally used as can be appreciated

in Figure 1.

Fig. 1: Four triangle mesh covered by

one TS = {ABCDEF}

The swapping

To represent certain meshes in TS form, it

is necessary to insert swaps. A swap is nothing

B D

C E

F

A

but re-sending a previously enumerated vertex

into the sequence. For instance, in the mesh of

Figure 2, the vertices D and E can be swapped

by inserting vertex D again into the sequence,

thus in {ABCDEDFG} the re-sending of vertex

D represent the swap. It’s worth to note that

the swap introduces a new null (zero area)

triangle but leaves a complete mesh

representation. How many swaps can be

introduced without affecting the performance

in a significant way? Isn’t it better to split

certain meshes in many TS instead of

introducing null triangles? Is it possible to find

an optimal representation of a mesh by cutting

it into several TS? If not, how much can be

improved with the compression rate of a mesh

represented by triangle strips?

Fig. 2: A swap is introduced to cover

the mesh in one TS = {ABCDEDFG}

PROBLEM

Let’s propose a formal definition of the

TS problem using a known concept. A dual

graph G´of a given planar graph G has a

vertex for each plane region of G, and an edge

for each edge joining two neighboring regions

[1], see Figure 3. The TS problem is analogous

to find a Hamiltonian path for the dual graph

of the mesh [3].

Fig. 3: G′ is the dual graph of G

Let M = { }nttt ,...,, 21 a set of triangles that

define a mesh with ti =

{ }Vvvvv i ∈|,, 321 where V is the set of all

vertices of the mesh. Let’s call formally S,

triangle strip of M, to a sequence of vertexes:

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥∈−≤=

∨∈=
=

++

3,,2,
,,|,...,, 2121

kVvkjswappingt
Mvvvtvvv

S
j

jjjk

Then, the problem would be to find a set

H of triangle strips that completely covers the

mesh and minimizes the total number of

vertices, thus:

{ () }minimun is |,...,,
11

21 ∑
==

∧==
m

i
i

m

i
im SMSTSSSH U

where T(Si) is the set of triangles of the strip Si.

The compression

A triangulated mesh M = { }nttt ,...,, 21 can

be described in the best case by one triangle

strip S of length n + 2 without swaps; this

doesn’t mean that it is always possible to attain

it. The theoretical compression rate of planar

meshes into TS can be defined based on the

number of vertices that describe a triangulated

mesh (3n) and the number of vertices

necessary for the best case n + 2, thus:

() 0,6667
3
2

3
23lim ≈=

+−
∞→ n

nn
n

In general, the compression rate for an

arbitrary partition H of a mesh as triangle

strips can be defined as:

n
mpn

3
2 1 ++

−=μ

where p is the total number of swaps for

all strips in H and m is the total number of

generated strips.

The worst case is produced when there is a

strip for each triangle (when m = n, p = 0)

thus:

0 ≤ μ ≤ 2/3

A

B D

C E

F

G

Where did the previous formula come

from? When a swap is introduced into a strip it

penalizes memory and speed with one vertex,

unlike a strip whose penalty is two vertices.

SOLUTION

Let’s introduce two necessary concepts

used by the algorithm: a triangle is referred to

as free if it doesn’t belong to any strip, and the

degree of a triangle is the number of free

triangles adjacent to it and can change at each

step of the algorithm.

The algorithm starts by creating an empty

set of strips H and follows as: set S as an

empty set of vertices, select the lowest degree

free triangle from the mesh and append its

vertices to S. With the last two vertices of S,

try to form a new triangle T with a third vertex

V of the mesh; if T cannot be formed or it’s not

free, then roll the last three vertices of S and

try again. If after two rolls this triangle doesn’t

exist then S is closed and appended to H, start

forming a new S again.

If the T is found then V is added to S and

starts the second heuristic: using the last edge,

formed by the last two vertices of S, and the

third vertex V of the mesh, try to form a new

free triangle T and append V to S, do this until

T cannot be formed. Check whether there is

another triangle T adjacent to the edge formed

by the last and the one before; if it exists, then

the swap is introduced by extracting the last

vertex of S, re-sending the currently

penultimate (previously the one before) and

appending the extracted one. If even this

triangle T doesn’t exist then close S, append it

to H and start forming a new S again while

there are still free triangles remaining. The

figure below shows the result of the algorithm

in a Quake 3 Arena game level.

Fig. 4: Q3A game level with μ = 41.19%

The algorithm takes into account the

existence of an efficient proven data structure

that models the dual graph with the adjacency

information and supplies basic operations like

finding the first free lowest degree triangle of

the mesh; get the degree of a triangle, etc. The

structure is updated on each step of the

algorithm and keeps the list of triangles sorted

by degree. The details of this structure are not

relevant at this point.

The pseudo-code is broken in two

procedures: (1) a top level build for selecting

the first triangle and strip direction, (2) a sub

routine to sequence the strip with possible

introduction of swaps based on the decision

made in (1):

Step 0: let H = ø the strip partition for the

mesh, G the dual graph, S = ø the current strip

Step 1: while exist free triangles in G do

 Step 1.1: T = first free triangle available in G,

 append T to S

 Step 1.2: while not exist a free adjacency

 triangle to T in G via its last edge do

 Step 1.2.1: roll the three vertices of S

 Step 1.2.2: if after two rolls the while

 condition (1.2) is still true, restore S to its

initial status and go to Step 1.5

 Step 1.3: let A the free adjacency triangle to T

 in G encountered in previous iteration. Include

 third vertex of A in S

 Step 1.4: call sequence(S, A, G)

 Step 1.5: append S to H, go to step 1

Step 2: return H

pseudo-code for build(): first triangle selection

Step 0: let S the current strip, T the current

triangle in S, G the dual graph, and fails = 0

the number of fails seeking for adjacency

triangles

Step 1: check for a free adjacency triangle A to

T in G via its last edge

 Step 1.1: if it exists then include third vertex

of A in S, set T = A, fails = 0

 Step 1.2: if it doesn’t exist: if fails = 0 then do

 swapping else restore the strip from the last

 swap. Set fails = fails + 1

Step 2: if fails < 2 then go to step 1

Step 3: return S
pseudo-code for sequence(): strip sequencing

RANDOMIZATION

The algorithm described previously starts

to sequence a strip for the “first lowest degree

triangle”. However, it can happen that more

than one triangle is the lowest degree free; the

choice of the starting triangle can produce a

different solution. The Figure 5 depicts this

situation obtaining three possible solutions
H1 = {(1, 2, 3, 4, 5, 4, 6, 4, 7, 8) , (11, 9, 10, 3, 5)}

H2 = {(8, 7, 4, 6, 4, 5, 3, 10, 9, 11), (1, 2, 3, 4)}

H3 = {(11, 9, 10, 3, 5, 4, 6, 4, 7, 8), (1, 2, 3, 4)}

The solutions H2 and H3 are the better

ones but not necessarily reached using a

deterministic algorithm. The solution will be

the same in every algorithm execution and the

remaining ones will never be explored.

Fig. 5: More than one triangle is the lowest

degree free triangle

The results of randomization of the first

lowest degree free triangle selection, after

several experiments show the existence of

multiple better and worse solutions, as can be

seen on the annexed histograms For instance,

the game level displayed in Figure 4 reached

over a 42% compression rate in the random

version of the algorithm.

The bell-like shapes of the samples that

resulted from multiple program executions

suggest a standard distribution (e.g. Gauss,

Exponential) for the compression coefficient.

But the tests did not produce such result in

several cases. Therefore, we decided to ignore

any possible standard distribution and always

treat it as a sample distribution directly related

to the complex topology of the mesh.

EVOLUTION

At this time, we focused on the task of

designing an algorithm to determine the

optimal stripping, without noting that we had

the best scenario for making continuous

experiments for computing it: video games.

Our graphics engine for games allows for

compressed triangulated surfaces, which

composes our game levels/models into triangle

strips. It is possible to get one compressed

2 4

3 5

7

1

10 9

11

8

1 2

3 3
2

2

1

1 2
6

2

1

3

solution for each surface of the level, but it is

practically impossible to compute the

optimized one for one of those meshes in a

reasonable time.

Why trying to compute the optimized

stripping in a short time interval if we have all

the time of live of our games to do it? While

someone executes our games for playing, the

engine can explore a different solution using

randomized selection and improving its

performance on each execution. Therefore all

that is needed is a cheaper pruning criterion.

Suppose that at least one solution was

computed for an arbitrary mesh M with

compression level µ* calculated from p* and

m*. In the next game execution, on each new

strip creation step, the state of the algorithm is

characterized by p and m and a remaining set

of free triangles. At this point the best case can

be presented on which just one new strip

without swaps is formed with all free triangles,

leading to the new algorithm state (p, m + 1).

If under such conditions the new compression

level µ of the mesh is worst than the current

best one µ* then the algorithm execution is

stopped and the current solution is used, thus:

* μμ ≤

n
mpn

n
mpn

3
*2 * 1

3
)12(1 ++

−≤
 +++

−

*2 *)12(mpmp +≥ ++

If the previous condition is never satisfied

and the algorithm reaches to the end then a

new better solution is found and stored. The

additional storage space needed is very small

in comparison with the size of the mesh,

currently p*, m* and the list of indexes of the

first selected triangles for each strip.

The described algorithm is formally

categorized as a random-restart hill climbing, a

meta-algorithm that turns out that it’s often

better to spend CPU time to explore the space,

rather than optimizing from an initial

condition.

This evolutionary solution can also be

used in multiplayer games and work in

cooperative mode. Each time a multiplayer

game session is created all players can share

their best solution indicators p and m through

the network. All these solutions are compared

and the best one selected if there is one. The

process of network replication of the best

solution is not expensive at all in contrast with

mesh sizes and can be done during game level

loading time, with practically idle networking

activity, which is also proportional to mesh

sizes. The info needed to be transmitted is just

the list of indexes of the first selected triangles

for each strip.

A new question arises: why don’t

preprocess all game level meshes to compress

it with optimal rates before the game release?

Time to play

Video game evolution recently brought

the era of Massive Multiplayer Online Games

(MMOGs). MMOGs exclusively emphasize

multiplayer game play with thousands/millions

of simultaneous players, huge scenes and

worlds composed by millions of triangles. On

the other hand, some MMOGs have no end

condition that includes awarding a winner

based on player’s behavior with the purpose of

the player never stops to play.

The preprocessing of one MMOG world

with the intention of reach the optimal striping

compression will require a long time and very

expensive power of computing. Therefore a

MMOG is the best scenario for execute this

algorithm using the power of computing of

those millions of users as long as be used in a

correct manner without saturate the network

and clients processors.

CONCLUSIONS

Both versions of the described algorithm

were implemented in C++ language using the

G3D library [2]. The results produced for the

deterministic and evolutionary algorithm, after

several iterations, are shown in the annexes.

The use of both algorithms in video games

can really improve the overall performance of

games containing extensive geometric data.

The memory overhead can be reduced in a

significant way increasing the chance of

including smoother surfaces and obtaining

higher details on 3D models and game levels.

The evolutionary version can be executed

during model/level loading, ensuring that all

processed data yield compression rates very

close to the theoretical limit.

A multiplayer game engine programmed

with the evolutionary aspect, can achieve high

levels of performance that grows in time as the

game is played especially in MMOGs resulting

in a drastically reduction of geometry data,

load and render time.

ACKNOWLEDGEMENTS

The authors would like to thank the

Stanford 3D Scanning Repository, United

States Geological Survey, Georgia Institute of

Technology, and Nasa’s Planetary Data

System for models bunny and roseburg. We

also are in debt with Oliver Matias van Kaick

for the support and with Morgan McGuire for

the G3D library. Thanks to idSoftware for

making public the Q3A source code.

Thanks to all members of the Virtual

Games Group for the overall wisdom, help and

friendship and especially to the student Hassan

Lombera for the direct collaboration in the

brief, English translation, implementation

issues, data and experiment’s results

collection. Also we would like to thank

Professor Juan G. Consuegra from UCi and

José H. Cifuentes Urquiza from IBM™ for

helping with the English correction of the final

draft.

REFERENCES
[1] H. Whitney, Non-separable and planar graphs,

Trans. American Mathematical Society. 34 (1932),

339–362.

[2] McGuire, M., G3D 6.09 3D Engine,

http://g3d-cpp.sourceforge.net

[3] O. Matias van Kaick, et al, Efficient Generation

of Triangle Strips from Triangulated Meshes.

Department of Computer Science Federal

University of Parana 81531-990 Curitiba-PR,

Brazil, 2004

[4] Stuart Russell, Peter Norvig, Chapter 4,

Artificial Intelligence: A Modern Approach

Prentice-Hall, (1995), ISBN 0-13-103805-2

[5] Triangle strip, Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Triangle_Strip

ANNEXES

Model Triangles Vertices Deterministic μ Evolutionary μ
face 3186 1683 63.30% 64.73%

grundy 12412 6208 61.70% 62.29%
bunny 69491 34834 60.79% 60.91%

roseburg 80423 40343 56.85% 56.93%
Table 1: Compression levels for 4 models

a) face

b) grundy

c) bunny

a’) face histogram resulted after 1000

experiments

b’) grundy histogram resulted after

1000 experiments

c’) bunny histogram resulted after 500

experiments

