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In this paper, we study the problem of selecting a sys-
tem that has the best performance or selecting one of
the best systems when the objective function is the ex-
pected performance of a complex stochastic system.
The focus here is on a huge size but finite feasible so-
lution set, that is not necessarily well structured. We
consider the use of the ordinal optimization technique
that concerns with the order of the designs in the state
space rather than estimating each design alternative
accurately. We also assume that the computing cost
is limited. We discuss how to allocate the available
computational resources on the alternative designs to
maximize the probability of making a correct selection
(selecting the best or one of the best systems).

Keywords: Simulation Optimization, Optimal Comput-
ing Budget Allocation, Simulated Annealing, Ordinal Op-
timization.

1. Introduction

We study the discrete stochastic optimization problems
where the objective function is the expected performance
of a complex stochastic system. The problem can be ex-
pressed as follows:

min
θ∈Θ

J(θ)≡ E[L(θ ,ξθ )], . . . . . . . . . (1)

whereL is a function ofθ andξθ , ξθ is a random variable
depends on the designθ , andΘ is the set of all potential
solution candidates or the search space, is a huge finite
set and not necessarily well structured.Θ is said to be
well structured if for anyθ ∈ Θ, ∃ a setN(θ), contains
all neighbors ofθ and all alternatives can be connected
through a sequence of neighbors. This type of problems
can be found in many real life complex stochastic sys-
tems such as communication, manufacturing, and other
systems.

When the sample spaceΘ is small, then numeral meth-
ods can be used, where the objective function values in
(1) are estimated using simulation. Random samples of

stochastic processξ 1
θ ,ξ 2

θ , . . . ,ξ N
θ of the random variable

ξθ are generated, andE[L(θ ,ξ )] is estimated as follows:

J(θ) = E[L(θ ,ξθ )]≈ 1
N

N

∑
i=1

L(θ ,ξ i
θ ) . . . . (2)

whereξ i
θ represents theith sample of designθ , andN

is the number of replications (i.e., the number of simula-
tion runs). Then use any deterministic optimization tech-
nique to solve the alternative problem by replacingJ(θ)
by J(θ). This method requires large computational time
to do simulation runs, especially when the set of feasible
solutions is large. Therefore, this method is considered
infeasible. Several techniques are proposed to tackle this
problem. In this paper, we focus on one of these tech-
niques, particularly the ordinal optimization technique
and compare its performance with the simulated anneal-
ing algorithm in a simple practical example.

The rest of this paper is organized as follows; in Section
2, we preview a simulated annealing algorithm, in Sec-
tion 3, we review the ordinal optimization approach and
in Section 4, we present the optimal computing cost bud-
get allocation technique. In Section 5, we present numeri-
cal results obtained from applying the proposed approach
to a buffer allocation problem for homogeneous asymp-
totically reliable serial production lines. We compare the
results and computational time to results obtained by ap-
plying the most recent simulated annealing algorithms to
the same problem. Finally, in Section 6, we end by some
concluding remarks.

2. Simulated annealing with the standard clock tech-
nique

Some researchers have studied the use of simulated an-
nealing to solve discrete simulation optimization prob-
lems. The simulated annealing algorithm has originally
been proposed by Kirkpatrick et.al. [9] who use the idea
of simulated annealing to solve deterministic optimiza-
tion problems. Gelfand and Mitter [6] and Gutjahr and
Pflug [7] have proposed and analyzed the simulated an-
nealing for solving stochastic optimization problems. Al-



refaei and Andrad́ottir [3] have proposed another version
of simulated annealing that is different from all other ap-
proaches in which it uses different criterion for estimating
the optimal solution. Alrefraei [2] proposes using the idea
of standard clock simulation combined with the simulated
annealing to reduce the simulation time.

We present the approach of Alrefaei [2] that uses the
standard clock simulation technique for estimating sev-
eral objective function values simultaneously, using one
sample path. The algorithm has the hill climbing feature
as in the simulated annealing algorithm. It starts by an ini-
tial state and then searches the neighborhood of the cur-
rent state in order to locate the best states. An estimate of
the objective function value for each state in the neighbor-
hood set of the current state are obtained simultaneously
using only one simulation run. Then good states are se-
lected with high probability as the next current state, other
states are not neglected, they are selected with probability
depending on the estimate of their object function values.

2.1. The SA algorithm
Now we present the simulated annealing algorithm that

uses the standard clock simulation technique, see Alrefaei
[2].

step 0: Select a starting pointX0 = θ0 ∈ Θ, let V0(θ0) = 1
andV0(θ) = 0 for all θ ∈ Θ andθ 6= X0, let k = 0
andX∗k = Xk.

step 1: Generate independent samplesξ1(θ),ξ2(θ),
. . . ,ξLk(θ) from ξ (θ) for all θ ∈ N(Xk) ∪ {Xk},
simultaneously using the standard clock simulation
technique, computēJk(θ) as follows:

J̄k(θ) =
1
Lk

Lk

∑
i=1

L(θ ,ξi(θ))

step 2: Let R̂(Xk) be defined as follows:

R̂(Xk) = ∑
θ∈N(Xk)∪{Xk}

exp
[
−C[J̄k(θ)− J̄k(Xk)]

+
]
,

whereC is a constant used as a scaler. SetXk+1 = θ
with probability

PXk,θ = E


exp

[
−C[J̄k(θ)− J̄k(Xk)]

+
]

R̂(Xk)


 (3)

step 3: Let k = k+ 1, Vk(Xk) = Vk−1(Xk) + 1 andVk(θ) =
Vk−1(θ) for all θ ∈Θ andθ 6= Xk.
If Vk(Xk)/R̂(Xk) > Vk(X∗k−1)/R̂(X∗k−1) then letX∗k =
Xk, otherwise letX∗k = X∗k−1. If the stopping criterion
is not reached, go to step 1.

Alrefaei [2] has shown that the Markov chain{X∗k },
generated by the algorithm converges almost surely to a
global optimal solution. If the system we are considering
is not a Markovian so that standard clock is not applicable,
then one can replace step 1 by:

step1
′
: Generate independent samplesξ1(θ), ξ2(θ),

. . . ,ξLk(θ) from ξ (θ) for all θ ∈ N(Xk)∪{Xk} and
computeJ̄k(θ) as above.

3. The ordinal optimization technique

The ordinal optimization approach has been proposed
by Ho et.al. [8] for finding a satisfactory alternative rather
than obtaining an accurate estimate of each alternative.
The ordinal optimization is particularly used when the
number of alternatives is huge (systems that have large
number of alternatives). The basic idea of ordinal opti-
mization for discrete event dynamic systems is simple;
instead of finding the best solution, ordinal optimization
concentrates on finding a good or better systems rather
than trying to find the true best system. Ordinal optimiza-
tion finds a satisfactory “good enough” solution within a
significantly reduced computational time and cost. The
ordinal optimization has been implemented in many ap-
plications in real-life where finding a “good enough” so-
lution is satisfactory. Such applications include, ecology,
air traffic control, manufacturing automation, buffer al-
location in production lines, queuing networks, parallel
networks and computer performance.

To illustrate the idea of ordinal optimization, suppose
we haveN alternatives inΘ, whereN is a large number.
Let G be the “good enough” subset, and|G| = g, (i.e., G
contains the bestg states inΘ ). Let S be the selected
subset from the design spaceΘ, whereS is selected ran-
domly, such that|S|= s. The quality of selection is based
on the overlap ofS with G. Then the probability that at
leastk of the observedsdesigns actually belong to the top
g designs is given by:

P(|G∩S| ≥ k) =
g

∑
i=k

(
g
i

)(
N−g
s− i

)

(
N
s

) . (4)

The technique of optimal computing budget allocation
has been proposed by Chen et. al. [4] to enhance the
use of ordinal optimization. It is assumed that the total
computational budget is limited, and the problem is how
these samples are allocated to each design in order to max-
imize the probability of correct selection (CS), denoted by
P(CS). The correct selection is to select a designb which
is the actual best design or to select a set of designs that
contain the best design with very high probability.

The following theorem by Chen et.al. [4] determines
the number of samples that need to be allocated for each
design in the design space in order to select the actual best
design with high probability.

Theorem 1:Given a total number of simulation sam-
ples TC to be allocated tok computing designs whose
performance is depicted by random variables with means
J(θ1),J(θ2), . . . ,J(θk), and finite variancesσ2

1 ,σ2
2 , . . . ,σ2

k
respectively. AsTC−→ ∞, the approximate probabil-
ity of correct selection can be asymptotically maximized



when

a) Ni
Nj

=
(

σi/δb,i
σ j/δb, j

)2
, j ∈ {1,2, . . . ,k}, andi 6= j 6= b.

b) Nb = σb

√
∑k

i=1,i 6=b
N2

i
σ2

i
.

WhereNi is the number of samples allocated to designi,
δb,i , the estimated difference between the performance of
the two designs(δb,i = J̄b− J̄i), and J̄b ≥ maxJ̄i for all
i (Here we assume that we are maximizing the function
J(θ)). HereJ̄i = 1

Ni
∑Ni

j=1L(θi ,ξi j ), whereξi j is a sample
from the distribution ofξi for j = 1,2, . . . ,Ni .

4. Optimal computing cost budget allocation (OC-
CBA)

In this section, we propose a procedure that deter-
mines the best allocation of simulation trials or samples
necessary to maximize the probability of correct selec-
tion, when the budget of the total cost of simulation runs
is limited. Suppose that it costsci for each simulation run
for designi, and we have a limited budget for the total
cost of simulation runs,(TC). The budget constraint can
be written as∑k

i=1ciNi = TC, whereNi , i = 1,2, ...,k is
the number of samples for theith design.

The proof of the following theorem is given by
Abubaker [1].

Theorem 2:Given a total costs of simulation runs
TC to be allocated tok computing designs whose
performance is depicted by random variables with
means J(θ1),J(θ2), . . . ,J(θk), and finite variances
σ2

1 ,σ2
2 , . . . ,σ2

k respectively. AsTC−→ ∞, the approx-
imate probability of correct selection can be asymptoti-
cally maximized when

a)
Ni

Nj
=

(
σi/δb,i

σ j/δb, j

)2

, i, j ∈ {1,2, . . . ,k}, andi 6= j 6= b.

b) Nb = Nsδb,s
σb

σs

√√√√ cs

cb

k

∑
i=1,i 6=b

1

δ 2
b,i

.

WhereNi is the number of samples allocated to designi,
δb,i the estimated difference between the performance of
the two designs(δb,i = J̄b− J̄i), andJ̄b ≥maxJ̄i for all i.
HereJ̄i = 1

Ni
∑Ni

j=1L(θi ,ξi j ), whereξi j is a sample fromξi

for j = 1,2, . . . ,Ni .
Remark: Chen et.al. [5] have derived a formula for the
relation betweenNi andNj , i 6= j 6= b and betweenNb and
Ni , i 6= b. The formula depends on the following bound for
normal distribution; IfY is normally distributed random
variable with meanδb,i and varianceσ2

b,i , thenP(Y < 0)≤
exp

(
−δ 2

b,i

2σ2
b,i

)
. Whenx= δb,i

σb,i
is large, then this bound is not

good; for example ifx = 1 thenP(Y < 0) = 0.15866but
exp(−x2/2) = 0.60653.

If we take any designs in the above theorem where
s 6= b, we get

Ni =
(

σi/δb,i

σs/δb,s

)2

Ns,

wherei = 1,2, . . . ,k, ands 6= i 6= b. Suppose

Di =
(

σi/δb,i

σs/δb,s

)2

then

Ni = DiNs. . . . . . . . . . . . . . . (5)

We also know that

Nb = Nsδb,s
σb

σs

√√√√ cs

cb

k

∑
i=1,i 6=b

1

δ 2
b,i

Suppose

Db = δb,s
σb

σs

√√√√ cs

cb

k

∑
i=1,i 6=b

1

δ 2
b,i

then

Nb = DbNs. . . . . . . . . . . . . . . (6)

Since∑k
i=1ciNi = TC then Ns∑k

i=1ciDi = TC, where
we assume thatDs = 1 this implies thatNs = TC

∑k
i=1 ciDi

, and

that

Ni =
DiTC

∑k
j=1c jD j

, i = 1,2, . . . ,k . . . . . . (7)

To enhance the performance of ordinal optimization,
we combine the optimal computing cost budget allocation
in order to allocate the number of allowed samples on the
competent alternatives smartly.

4.1. The OCCBA Algorithm
The OCCBA Algorithm is described as follows:

step 0: Initialization:

0.1: Determine the size of the subsetG, let |G|= g.

0.2: Determine the number of initial simulation sample
t0.

0.3: Determine the number of increment simulation
samples∆.

0.4: Determine the total budget of computing costTC.

0.5: Determine the costcθ associated to alternativeθ ,
for all θ ∈Θ.

0.6: Select a starting pointθ0 ∈Θ, let l = 0, wherel is
the iteration number.

step 1: Select a subsetG of g alternatives randomly from the
feasible solution setΘ.

step 2: Let Nl
θ = t0 for all θ ∈G∪{θl}.



step 3: Generate independent samplesξ θ
1 ,ξ θ

2 , . . . ,ξ θ
Nl

θ
, for

all θ ∈G∪{θl}
step 4: If ∑θ∈G∪{θl } cθ Nl

θ ≥ TC, then go to step 8.

step 5: ComputeJ̄l (θ), δθl+1,θ andσθ for all θ = G∪{θl}
as follows:

J̄l (θ) =
1

Nl
θ

Nl
θ

∑
i=1

L(θ ,ξ θ
i )

θl+1 = arg max
θ∈G∪{θl }

{J̄l (θ)}

δθl+1,θ = J̄l (θl+1)− J̄l (θ) , θl+1 6= θ

σθ =
1

Nl
θ −1

Nl
θ

∑
i=1

(
J̄l (θ)−L(θ ,ξ θ

i )
)2

Step 6: Increase the computing budget by∆ and compute the
new budget allocation,Nl+1

θ for all θ ∈G∪{θl}, us-
ing equations (5), (6) and (7).

Step 7: Perform additionalmax{0,Nl+1
θ −Nl

θ} simulations
for all designθ ∈ G∪{θl}. Let l ←− l + 1. Go to
step 4.

Step 8: If the stopping criteria is not reached, setθ0 = θl ,
l = 0 and go to step 1

Note that the parameters given in Step 0, depend on the
availability of resources and the way the user would like to
proceed. An appropriate setting is to divide the simulation
to more than 30 iterations. Using the ordinal optimization
technique in step 1, makes the problem easier and accel-
erates the process of reaching the optimal solution. The
OCCBA technique is used in steps 4-7 to select a good
alternative fromG∪{θl} as the next current alternative,
the procedure continues until termination is reached.

5. Numerical example

We consider the buffer allocation problem for homoge-
neous asymptotically reliable serial production lines. The
machines of production lines are assumed to have a pos-
itive probability of working and a positive probability of
failure. The proposed algorithm is applied in production
lines to select the best design that has the maximum pro-
duction rate when the total buffer capacities are given.
Since the set of feasible solutions is well structured in
this example, we can use also simulated annealing, so we
compare the performance of these two algorithms on this
example.

The Buffer allocation model, we consider is described
as follows Lim et.al. [10]. A serial production line con-
sists ofM machinesMi , i = 1, . . . ,M, andM− 1 buffers
B j , j = 1, . . . ,M−1 of finite capacity. It is assumed that
each buffer stores at least 1 unit and that the total buffer

capacity that can be allocated over all buffers is a constant
integerN.

Machine Mi is starved if bufferBi−1 is empty, and
blocked if bufferBi is full and machineMi+1 is either
down, blocked, or busy. An unlimited supply of work
pieces is available up stream machineM1, and an un-
limited storage area is present downstream machineMM.
Thus, the first machine is never starved and the last ma-
chine is never blocked. Machines have identical service
time distribution. A MachineMi that is not blocked and
not starved, can handle a part of production during any
time slot with probabilityδi and fails to do so with proba-
bility 1−δi (production lines in which machines have this
property are called homogeneous).

It is assumed that the production line under considera-
tion is homogeneous, asymptotically reliable, that is

δi = 1− εΛi . . . . . . . . . . . . . . (8)

where0 < ε ¿ 1 andΛi , i = 1, ...,M, is independent of
ε. Λi is known as the loss parameters.

Let Li be the cumulative losses per hour for machineMi
due to its failure and letAi be the production rate of ma-
chineMi . If Mi does not break down then the probability
of handling a job by this machine isδi = Ai−Li

Ai
= 1− Li

Ai
.

Since δi = 1− εΛi where 0 < ε ¿ 1, it follows that
Li ¿ Ai . Thus,εΛi refers to the fraction between the cu-
mulative losses of machineMi and the production rate of
machineMi (i.e.,Λi depends onδi).

Major decisions in designing production lines involve
the workload allocation and the buffer allocation prob-
lems with respect to an objective function such as, the
profit maximization or the production rate maximization
for a given total buffer capacity. Our objective in this ex-
ample is to find the optimal buffer allocations in order to
maximize the average production rate of the production
line.

Assume we haveM machines andM− 1 buffers, and
the total buffer capacities isN. Then we need to find the
optimal vectorθ = (Nθ

1 , . . . ,Nθ
M−1) ∈ Θ that maximizes

PRM(θ) given that∑M−1
i=1 Nθ

i = N, whereΘ is the fea-
sible region andPRM(θ) is the mean production rate of
a production line consisting ofM machines andM− 1
buffers that is related to designθ . Nθ

i is the capacity of
buffer Bi related to designθ , i = 1, ...,M− 1. For any
θ ∈ Θ, we can estimate the production rate that depends
on the service timeµi andδi=Prob(Mi is working) for all
i = 1, . . . ,M. We assume that the service time is fixed for
all designs and equals one unit time. In other words, the
system changes its state at discrete points. To generate
an estimate of the production ratePRM(θ), we generate
ui ∈Uni f orm[0,1], if ui < δi then machineMi is working,
otherwise the machine is not working, for alli = 1, . . . ,M.

We apply OCCBA Algorithm for production lines with
five machinesMi , i = 1,2, . . . ,5, (M = 5) and loss param-
etersΛi , i = 1,2, . . . ,5, respectively, see Table (1), where
the total buffer capacities are given. we computeδi by
using Equation (8), for alli = 1,2, . . . ,5, whereε = 0.01,
(see Table (2)).



Λ1 Λ2 Λ3 Λ4 Λ5
3.1 2.4 1.5 4.4 3.5

Table 1. The loss parameters for the numerical example.

δ1 δ2 δ3 δ4 δ5
ε = 0.01 0.969 0.976 0.985 0.956 0.965

Table 2. δi , i = 1,2. . . ,5, for ε = 0.1 and 0.01.

The number of designs in the state space can be com-
puted by considering distributingN units on B buffers
spaces, which can be considered by placingB− 1 bars
in to the spaces between theN units; this can be done by(

N−1
B−1

)
ways. Therefore the number of different al-

ternative designs is:

|Θ|= (N−1)!
(N−B)!(B−1)!

. . . . . . . . . (9)

whereN is the total buffer capacities,B is the number of
buffers (i.e.,M−1).

In this example, we assume thatN = 15 then we have
364 alternatives designs inΘ. Figure (1) shows the pro-
duction rate when we apply OCCBA Algorithm and com-
pare its performance with the performance of SA Algo-
rithm. We repeat the implementation for 25 iterations and
in each iteration, we use the ordinal optimization to se-
lect a setG of 12 designs (i.e.,g = 12), and use optimal
computing budget allocation to select the best design. We
assume that the total number of samples isTC= 13,000
with equal cost, the increment∆ = 50and the initial sam-
ple sizet0 = 20. We use SA Algorithm with the following
neighborhood structure: the neighborhood of any design
θ can be obtained by moving one buffer slot to another
buffer, i.e.,

N(θ) = {θ
′ ∈Θ : ∃ i, j ∈ {1,2, . . . ,B} . . . (10)

wherei 6= j such thatθ ′
= θ +ei −ej}, ∀ θ ∈Θ

whereei is a unit vector whoseith term is 1. It is clear
from Figure (1) that the optimal computing budget alloca-
tion locate the optimal solution faster than the simulated
annealing. The optimal vectorθ = (3,3,4,5) with pro-
duction rate (0.938456). OCCBA takes 9 minutes and 54
seconds, but SA takes 32 minutes and 2 seconds to com-
plete the whole course of simulation. Convergence time
of OCCBA takes 6 minutes and 13 seconds, but SA takes
24 minutes and 37 seconds.

Now, we consider a larger size problem by increasing
the number of machines toM = 10with B= 9 buffers, and
a total buffer capacitiesN = 20and loss parameters vector
(Λi , i = 1, . . . ,10) is given by (3.1, 2.4, 1.5, 4.4, 3.5, 1.2,
5.3, 2.9, 1.9, 2.5). By formula (9) we have|Θ| = 75,582
designs. Figure (2) depict the result when the two algo-
rithms are applied. We repeat the algorithms for 35 itera-

Fig. 1. The Production rate obtained when OCCBA Algo-
rithm and SA Algorithm are applied for 5 machines

tions and in each iteration we use the ordinal optimization
to select a setG of 72 designs (i.e.,g = 72), and use opti-
mal computing budget allocation to select the best design,
whereTC= 73,000, ∆ = 200andt0 = 100. In SA Algo-
rithm we use the neighborhood structureN(θ), given by
Equation (10).

It is also clear from Figure (2) that the optimal
computing budget allocation algorithm behaves better
than the simulated annealing algorithm. The opti-
mal vector obtained by the proposed method isθ ∗ =
(2,2,3,3,2,3,2,2,1) with production rate (0.909586).
The convergence time of OCCBA is 32 minutes and 26
seconds, but for SA is 144 minutes and 57 seconds. By
applying the procedure of Lim et.al. [10] on the same
vectorθ ∗ we obtain the production rate of (0.911766).

Fig. 2. Production rate by OCCBA Algorithm and SA Al-
gorithm ,δi , i = 1,2. . . ,10with ε = 0.01



6. Conclusion

We have presented an algorithm that can be used to solve
stochastic optimization problems even if the feasible so-
lution set is not well structured. This algorithm is able
to locate one of the best alternatives with high probabil-
ity. The proposed algorithm consists of two sequential
stages; in the first stage, the ordinal optimization tech-
nique is used to select a small subset from the state space.
The optimal computing cost budget allocation (OCCBA)
is used to optimally allocate the available computational
budget in order to select the best state from the small sub-
set with high probability. Other states are then replaced
by newly generated states, the procedure is repeated un-
til the available budget is used. The ordinal optimization
technique is used to reduce computational time and cost
since it is concerned with the ordinal rather than cardinal-
ity of alternative designs. We compare the performance
of the proposed algorithm with the performance of a ver-
sion of the simulated annealing algorithm. It is clear on
this example, the proposed algorithm performs well and
locate a solution faster.
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