
Technology of Orders Based Transparent Parallelizing

Vitaliy Pavlenko

Victor Burdejnyj

Odessa National Polytechnic University

Shevchenko 1

Odessa, Ukraine

Odessa I.I. Mechnikov National University

Dvoryanskaya 2

Odessa, Ukraine

E-mail: pavlenko_vitalij@mail.ru, vburdejny@gmail.com

INTRODUCTION

There are a lot of problems today that cannot be solved

fast enough on traditional computers. That is one of the

reasons why parallel computing (including cluster

computing) is the subject of a lot of researches nowadays

(Voyevodin and Voyevodin 2002). For example, that’s

the problem of Volterra series based nonlinear dynamic

systems models identification (Pavlenko and Cherevatiy

2006 or Kolding and Larsen or Pavlenko and Fomin

2004), problem of full scan based comparison of features

diagnostic value, modeling problems and so on

(Afanasiev, Khutornoy, Posypkin, Sukhoroslov,

Voloshinov 2006 or Pavlenko and Burdejnyj 2006 or

Fissgus 2001).

There is a set of problems in the field of parallel

computing that should be solved. Those are problems of

hardware support of parallel computing, problems of

parallel algorithms development and problems of

development of parallel applications for concrete parallel

architecture. One of not completely solved problems of

parallel computing is the is the problem of creating tools

for parallel applications development. Main obstacle for

creating such tools is the complicatedness of finding parts

of program that can be executed in parallel. That’s the

reason why almost all modern technologies of parallel

programming abandon this work to programmer.

Implementation of data sharing on parallel architectures

without shared memory is usually abandoned to

programmer, too. That moves accent from implementing

the algorithm of applied problem to using tools, offered

by some parallel computing technology. Also that makes

parallel applications development much harder.

The purpose of this paper is to create a high level cluster

computing technology that allows user to develop parallel

applications fast enough for certain wide class of

algorithms.

EXISTING TECHNOLOGIES OF PARALLEL

APPLICATIONS DEVELOPMENT

Used parallel architecture should be always taken into

consideration for efficient parallel applications

development. It this approach we use clusters.

There’s one general tendency about modern development

tools and technologies. Except traditional requirements

(such as efficiency of created applications) an attention is

paid to requirements of high speed and low labor

intensiveness of software development. It seems that this

tendency is caused by low cost of computer work time

and high cost of programmer work time. But this

tendency did not affect parallel computing technologies

much. It seems to be caused by big cost of parallel

computers work time while the cost of programmers work

time is not higher than it is in other areas. High cost of

parallel computer work time seems also to be the reason

of popularity of low-level technologies that give the

programmer more control over the computer and allow

programmer to minimize program execution time while

time and labor intensiveness of program development are

not so critical. A similar situation can be observed in area

of distributed computing where mainly low-level tools are

being developed nowadays.

Therefore the purpose of this approach is creation of

parallel computing technology that follows these

requirements:

• High level of technology. It is a well-known

situation in the history of programming when some

features have been abandoned to get some advantages.

For example, “go to” operator has been abandoned to

make understanding source easier. So this technology

should not provide low-level operations (such as sending

and receiving messages) to user, but the set of provided

high-level operations should be enough for development

of efficient parallel applications. This requirement should

make parallel applications development much faster and

easier.

• Transparency of parallel architecture. It is much

easier to think about writing a program for one processor,

so the technology should hide parallel architecture from

user where possible.

• Efficiency of the technology. The overhead,

caused by the technology, must be minimal. Also the

technology must allow used to create efficient

implementations of wide enough class of applications.

• High speed and low labor intensiveness of

parallel applications development. That also means high

speed and low labor intensiveness of porting existing

applications.

TECHNOLOGY OF ORDERS BASED

TRANSPARENT PARALLELIZING

Basic principles

We assume that we have selected some set of procedures

in the program. Each procedure should not work any data

during execution except parameters and temporary (and

inaccessible outside the procedure) data structures. Each

parameter of each selected procedure should be passed by

value. Execution of program must mean execution of

certain selected procedure. This assumption imposes

some limits on program. For example, it forbids using

global variables or I/O devices. But it is shown below that

these limits can be loosened. For example, work with

global variables and I/O devices can be allowed is some

specific requirements are met.

The example that will be used to illustrate the technology

is shown on fig. 1:

Fig. 1. Illustration of a sample program.

We show procedure execution time with a rectangle (time

goes from left to right). If one procedure calls another

one, a part of rectangle is shaded to show called

procedure execution time (there are no nested calls in this

example). Lengths of rectangles and their parts are

proportional to the time of execution of corresponding

program parts. A circle is used to show input parameters

and a rhombus is used to show output ones. It is

considered that all input parameters are known already at

the moment of program execution start. Lines connect

moments of getting some values and moments of their

first usage. Computations, performed by one processor,

are shown by a dotted rectangle.

The first principle of offered technology introduces the

concept of an order. An order is defined as the minimal

unit of work that should be executed on one computer and

cannot be splitted into smaller parts. Such a unit of work

is defined as execution of one procedure without

execution of procedures it calls. Each procedure call

creates a new order that should be executed by some

computer of cluster (let’s call such procedure call

“making an order”). One of selected procedures should be

marked as main one to define program entry point (and all

input and output data of program should be passed

through parameters of this procedure).

This principle is illustrated on fig. 2. It is considered that

three orders are executed by different processors and their

execution starts immediately after making corresponding

order. Vertical lines show moments of time when orders

are made.

Fig. 2. An illustration of the first

principle of offered technology.

A lot of algorithms contain intervals of time between the

moments of getting some values computed and the

moments of first usage of these values. It is often possible

to make such intervals bigger by applying some changes

to order of computations. If there are no such intervals in

some algorithm, we can say that each operation should

not be executed before previous one is over, so we cannot

create parallel implementation of this algorithm at all. If

we perform procedure call in common programming

languages, caller procedure continues its execution only

after called one is over. In other words, we can say that

caller procedure starts waiting for output parameters of

called procedure in the moment of call and stops waiting

in the moment when called procedure finishes its

execution. The second principle proposes to continue

execution of caller procedure after the call and to start

waiting only in the moment of first request to output

parameters of called procedure. If called procedure

execution is already over in the moment of first request,

we should not start waiting at all.

This principle is illustrated on fig. 3:

Fig. 3. An illustration of the second

principle of offered technology.

We use dashed lines to show moments when an order

stops execution to wait for some value. This diagram can

be built from previous one by maximal possible left shift

of all computations that keeps the following requirement

met: each value is used only after it is got.

So order means a unit of work but is based on parts of

program source, marked as procedures. But procedures

are terms of programming language, and programmers

can have different reasons to mark parts of source as

procedures. These reasons can have nothing in common

with getting high efficiency of parallel application.

Theoretically there’s no problem about that: we can easily

split a procedure with big execution time into a few

smaller ones and any unneeded splitting only changes the

order of computations and does affect the efficiency of

the program. But from the practical point of view the

procedures with small execution time and big number of

calls cause big overhead. So we should allow programmer

to call selected procedures in standard way.

Offered technology is based on task parallelism and

MIMD model. It uses only four computers

communication operations: getting an order, getting

results of order execution, making an order and sharing

results of order execution. And there are only two

operations that are accessible to user: making an order

and getting a value, computed in another order. That

means that we can make parallel applications

development much easier by hiding computer

communication operations from user. But that also means

that a framework that implements the proposed

technology should take care or efficient usage of network

itself. Note that a program in this technology is a set of

instructions for a whole cluster (unlike programs in MPI

technology that are a set of instructions for each

computer). That also means that the best algorithms to be

parallelized with offered technology are algorithms with

task parallelism.

Formal description of technology

Offered technology can be used to create parallel

applications on many structural procedural or object-

oriented programming languages. We will use terms of

Java programming language in the following description.

Requirements about the selected set of procedures can be

explained in the following way. There must be a set of

static methods in the program. Each of them can only

perform some computations during execution and can

work only with its parameters and some temporary data

structures. It can also execute other selected methods

using some mechanism, provided by the framework. We

do not take care about traditional procedure calls because

they do not differ from usual computations. It is

impossible to pass all parameters by value in a lot of

languages, including Java. So let’s replace this

requirement with the following one: if we replace a

pointer to some data with a pointer to copy of that data,

time and result of method execution should stay the same.

If data contains some pointers inside, this should also be

true for them.

We can make two conclusions from these requirements:

two concurrently executed procedures do not affect each

other and the procedures can pass data to each other only

through parameters. We can also tell that if procedure A

calls procedure B and we replace call of procedure B with

applying the results of its execution to values, passed as

parameters, we will not change result of execution of A

and will make time of execution of A lower by the time of

execution of B. So we are able to execute B on another

computer as proposed in the first principle of offered

technology.

However, the first principle does not allow us to get

acceleration by using many computers instead of one. The

second principle describes the way to allow more that one

computer to work in the same time.

These two principles split operators in the source of user

code into three groups: operators of making orders,

operators of data request and operators of computations.

So we can describe algorithms we need.

Order execution algorithm (should be executed on each

client computer):

get an order from the server;

for (every parameter of the procedure)

{

 if (parameter is input or

input/output) {

 if (parameter value is known) {

 set the value of parameter

according to order data;

 } else {

 bind the parameter to the

identifier from order data;

 }

 } else {

 set default value to parameter;

 }

}

execute needed selected static method;

for (every output or input/output

parameter of the procedure) {

 send parameter value to server;

}

notify the scheduler about a new free

processor;

Algorithm of making an order:

send ID of procedure that should be

executed to server;

for (every input or input/output

parameter) {

 if (parameter value is known) {

 send parameter value to the

server;

 } else {

 send the identifier bound to this

parameter to the server;

 }

}

get the set of identifiers from the

server;

for (every output or input/output

parameter) {

 bind the parameter to the next

identifier;

}

notify the scheduler about a new

order;

Algorithm of getting some value:

get an identifier, bound to the value;

get a value from server according to

identifier;

if (the value is not yet computed) {

 tell the identifier to the

scheduler;

 notify the scheduler about a new

free processor;

 stop execution and wait for a

notification from the scheduler;

 get the value from the server

according to identifier;

}

unbind the identifier from the value;

Scheduler is a part of client that makes decisions about

continuation of execution of previously suspended order

or getting a new one from server after some processor is

being freed. Depending on used algorithms the scheduler

can either work on different clients independently or can

use server for coordination.

Let’s talk about creating a framework that implements the

offered technology. The main question is about the way of

second principle implementation because the second

principle means that the system should work in a little

unusual mode. To implement the second principle we

have to find each point of program that contains an access

to some data and add a verification of presence of that

data and getting it from server if needed. There are a few

ways to do that:

• We may ask user to add such verifications. A

small advantage of this method is possibility of

optimization of such verifications because user can

known the places where such verifications are not

needed and not to place them there. But the main

disadvantage of this method is that is causes low

speed and high labor intensiveness of parallel

applications development. Also this method requires

user to pay a great attention to such verifications

because mistakes in them can cause bugs that are

hard to reproduce, find and fix.

• We may analyze the source of the program and

add verifications there needed. The main advantage

of this method is hiding the verifications from user.

The problem of this method is that it’s hard to find

places in program where we can be sure that checks

are not needed.

• We can analyze compiled version of program.

This variant makes sense only if program has been

compiled to some kind of bytecode which is easy to

analyze – for example, Java bytecode or MSIL in

.NET Framework.

• If used programming language is an object-

oriented language, we can ask user to implement a

class for each data type, used as procedure parameter,

and to implement data getting logic is methods of

these classes that provide access to encapsulated data.

The first principle means that we have to provide some

mechanism of making orders to user. We can do that

either with applying changes to language (by patching

compiler or adding a preprocessor) or without applying

any changes. In the second case we can simply generate a

set of methods with the same signature as selected ones

that will perform making orders. These methods can be

generated either as source or as binary code (second

variant can be better in Java or .NET Framework). There

are a few ways that can be used for declaring the selected

set of procedures:

• User can declare procedures list in a separate file.

• User can mark selected procedures with specific

comments.

• User can mark procedures with annotations (in

Java 1.5.0 or above or C#).

The next question is the question about possible ways of

scheduler implementation. It is impossible to create a

scheduler that minimizes time of execution of any

algorithm, so we have to use some heuristics. The

following heuristics have been offered:

• Naive planning heuristic prefers continuation of

execution of ready order to getting a new one from

server.

• Greedy scheduling heuristic also prefers

continuation to getting a new order. If there are a few

different orders to continue or to get from server, it

prefers the one that blocks execution of the biggest

number of orders.

The diagram of states of an order is shown on figure 4:

Fig. 4. Diagram of states of an order.

The states mean the following:

• COMMITTED – the order has been made but it’s

execution haven’t started yet

• WORKING – order is now being executed

• BLOCKED – order execution has been stopped

because of a request to not still computed data

• READY – order execution has first been stopped

because of a request to not computed data, but we

already have the data we need

• DONE – order execution has been successfully

completed

• FAILED – order execution has failed

State changes can happen in the following situations:

1) Some computer of cluster gets the order.

2) Order tries to get not computed data.

3) Needed data has been computed.

4) Number of concurrently executed orders is less

than number of processors of computer, so we can

continue execution of that order.

5) Order execution has been successfully

completed.

6) Order execution threw an exception.

7) Other method that had to compute data for

current one has thrown an exception.

Comparison of the offered technology and the

nearest analogues

The closest analogue of the offered technology is the T-

system that is being developed in Institute of the

programmatic systems of the Russian academy of

sciences. Although the offered technology has been

developed independently, its main principles are close to

the main principles of the Т-system (Abramov and

Adamovich and Inyukhin and Moskovsky and Roganov

and Shevchuk and Shevchuk and Vodomerov 2005). The

base concepts of the Т-system are Т-functions and

unready values. A Т-function is defined as some clean

function. Any call of T-function is transparently replaced

with a network call that means execution of method on

another computer of cluster. An unready value is a

variable which value is not currently known. Such values

appear because of T-functions calls, and any attempt to

get value of such variable causes getting its value from

another computer with (possibly) waiting.

Main principles of these two technologies are close, so

their problems should be close, too. Their main problems

are caused by using of existing program splitting into

procedures to find parts of code that should be executed in

parallel. That may cause either getting a lot of small

orders (and big overhead for their management) or small

number of big orders that cannot utilize whole cluster.

The problem of small orders is partially solved in the

offered technology by allowing user to call selected

procedures locally. Also other methods of method calls

optimization have been proposed to prevent getting big

overhead.

TESTING OF EFFICIENCY OF OFFERED

TECHNOLOGY

Described technology has been implemented as a

framework on Java programming language. RMI has been

used to implement communication between server and

clients. JDBC has been used to implement storing of final

and intermediate computations results to external

database. A solution of the problem of determination of

diagnostic value of formed diagnostic features has been

implemented for testing of efficiency of created

framework. It has been run on clusters of 1, 2, 3, 5 and 10

computers with Intel Pentium 1.7 GHz processors,

connected with Fast Ethernet for problems with

dimensions 23, 24 and 25. The dependence of execution

time from the problem dimension and the number of

computers is shown on fig. 5:

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

1 2 3 5 10

23

24

25

Fig. 5. Results of experimental testing

of efficiency of framework.

Result of multiplication of execution time by number of

processors grows by not more than 1.13% when using 2, 3

or 5 computers instead of one, and by not more than

3.25% when using 10 computers instead of one.

REFERENCES

Voyevodin V.V., Voyevodin Vl.V., “Parallel

computations”, Saint Petersburg: BHV-Petersburg,

2002 (in Russian)

Pavlenko V.D., Cherevatiy V.V., “Identification of

Nonlinear Systems as Volterra Kernels with the Help

of Differentiation of Responses on Amplitude of Test

Signals”, Proceedings of the V International

Conference “System Identification and Control

Problems” SICPRO’06, Institute of Control Sciences,

Moscow, Jan 30 - Febr. 2, 2006, pp. 203—216. CD

ISBN 5-201-14984-7, www.sicpro.org.

Kolding T. E., Larsen T. “High Order Volterra Series

Analysis Using Parallel Computing”,

http://citeseer.ist.psu.edu/242948.html

Pavlenko V.D., Fomin A.A., “Parameters Space

Construction on Base of the Models of Diagnostic

Object Using the Volterra Series”, Proceedings of the

III International Conference “System Identification

and Control Problems” SICPRO’04, Institute of

Control Sciences, Moscow, January 28 – 30, 2004,

pp. 899—918. CD ISBN 5-201-14966-9,

www.sicpro.org.

Afanasiev A.P., Khutornoy D.A., Posypkin M.A.,

Sukhoroslov O.V., Voloshinov V.V., “Grid

Technologies and Computing in Distributed

Environment”. Proceedings of the III International

Conference “Parallel Computations and Control

Problems” PACO’2006. Moscow, October 2 - 4,

2006. V.A.Trapeznikov Institute of Control Sciences,

2006, pp. 19–40, СD ISBN 5-201-14990-1.

Pavlenko V.D., Burdejnyj V.V., “Principles of

Organization of Orders Based Cluster Calculations

Using Implicit Parallelizing”. Proceedings of the III

International Conference “Parallel Computations and

Control Problems” PACO’2006. Moscow, October 2

- 4, 2006. V.A.Trapeznikov Institute of Control

Sciences, 2006, pp. 670 – 690, СD ISBN 5-201-

14990-1.

Fissgus U. “A Tool for Generating Programs with Mixed

Task and Data Parallelism”. Dissertation, University

Halle-Wittenberg. – 2001.

(http://sundoc.bibliothek.uni-halle.de/diss-

online/01/01H119/prom.pdf)

Abramov S., Adamovich A., Inyukhin A., Moskovsky A.,

Roganov V., Shevchuk E., Shevchuk Y., Vodomerov

A.. 2005. “OpenTS: An Outline of Dynamic

Parallelization Approach. Parallel Computing

Technologies: 8th International Conference”, PaCT

2005, Krasnoyarsk, Russia, September 5-9, 2005.

Proceedings. Editors: Victor Malyshkin - Berlin etc.

Springer, 2005. - Lecture Notes in Computer Science:

Volume 3606, pp. 303-312.

