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Abstract 

This paper presents an incremental method to 3D 

transformation by VQS structures. For interpolated 

scaling, rotation and translation between two animation 

key frames, with constant intervals in size, angle and 

distance, the proposed approach reduces the VQS 

transformation cost by more than an half. Moreover, all 

interpolations for VQS key frames are performed 

implicitly at no cost. In other words, the expensive 

trigonometric functions in quaternion Slerp and 

exponential functions in scalar interpolation are 

completely eliminated from the process. The method is 

fast, accurate, numerically stable and also preserves all 

geometric characteristics of the original transformation 

and interpolation algorithms. 

1. Introduction 

In 3D graphics, quaternions are often considered as the 

“weapon of choice” for rotations [1]. Similar to the 

homogenous matrix approach, the rotation by a 

quaternion is combined with a translation vector and a 

uniform scaling factor. The operation is referred as 

transformation by a VQS structure [3].  

Mathematically, a VQS structure is defined as triplet T = 

[v, q, s], where v=[ xv, yv, zv, 0] is a “pure quaternion” 

representing a translation vector, q=<u, w> is a 

quaternion with u=<xu, yu, zu> and s is a uniform scaling 

factor. A transformation of any given “pure quaternion” 

r=<x, y, z, 0> is then calculated by operations defined on 

quaternions, namely multiplication, scale product and 

addition. It results in another pure quaternion r′ : 
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That is, a VQS transformation is to rotate by q, scale by s 

and then translate by v. It is easy to verify that the result 

is equivalent to the matrix transformation. In practice, to 

save the computational time, quaternions are multiplied 

out to yield 
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where v, r and r′  are treated as 3D vectors. The 
transformation  by a VQS in this approach takes 28 

multiplications and 17 additions/subtractions.  

 

2. VQS Interpolation 

In real-time simulation and video game software, VQS 

structures are often created as key frames to reduce the 

space occupied by animation data. At run_time, the 

intermediate transformations are generated by 

interpolating between key frames. If we assume T0=[v0, 

q0, s0] and Tn=[vn, qn, sn] are two VQS key frames, then 

Tt=[vt, qt, st], for any [ ]0.1:0.0∈t , can be computed by the 

following three interpolation algorithms:  

(1) Lerp for translation:   
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(2) Slerp for rotation: 
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(3) Exponential interpolation for scaling: 
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Tt = [vt, qt, st] is then used for transformation to create a 

smooth motion. Note that the exponential interpolation 

(instead of linear) is used for scaling factors. This is 

intended to compensate the non-linearity of delusional 

perception of the human eye since it is more sensitive to 

changes in smaller objects than that in larger ones. Figure 

2-1 compares the linear and exponential approaches 

between scales of 0.1 and 10 in 100 interpolation steps. 
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Figure 2-1: Comparison of Linear and exponential scaling 

3. Incremental VQS interpolation 

Now, we consider the incremental approach to VQS 

interpolation. That is, we further assume that, when 

interpolating between T0 and Tn, it can be done 

incrementally through n steps with a fixed interval for 



locations, angles and scales. This allows us to change t 

from 0.0 to 1.0 with a constant interval ∆t=1/n and obtain 

integer k such that  

t = k∆t = k/n,  for k=0, 1, … , n. 

Under these assumptions, after replacing t with k/n, 

equations in E.2-1 become  
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We refer those equations in E.3-1 as “incremental 

interpolations” for translation, rotation and scaling 

respectively. The conversions of the first and last 

equations are straightforward. However, the second 

equation for quaternion interpolation requires some 

explanations. Basically, it converts the original Slerp 

interpolation into its incremental form. In other words, 

E.3-1 says that the slerped quaternion qk can be computed 

by multiplication of k-th power of a constant quaternion 

qc and q0, where β=α/n and u is a unit vector defined by 
components of q0 and qn as 

u = (w0un – wnu0 + u0×un)/sin(α).  

The derivation is discussed in full length in [4]. 

Let T0=[v0, q0, s0] be the initial VQS. Equations in E.3-1 

allow to rewrite the incrementally-interpolated VQS at 

step k+1 as Tk+1= [vk+1, qk+1, sk+1] with recursive functions 

of Tk = [vk, qk, sk] from the previous interpolation step. 

That is, if we assume [v0, q0, s0] at k=0, then we always 

have the following at any k=1, … , n−1: 

nvvvvvvvkv nckcck /)(,)1( 001 −=+=++=+  

])sin(),[cos(,0

1

1 uqqqqqq ckc

k

ck ββ=== +
+        E.3-2 

nn
ckc

k

ck
s

s
ssssss /1

0

0

1

1 )(, === +
+  

Note that, in E.3-2, all vc, qc and sc are constants and 

therefore can be pre-computed once for given T0, Tn and 

interpolation steps n. 

With the recursive definitions, transformations by a 

sequence of interpolated VQS structures, from T0 to Tn in 

n steps of fixed intervals on any arbitrary vector r, can be 

written as 
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Replacing with recursive definitions for translation, 

quaternion and scaling factor at k+1, we obtain  

)(

)1(

)1()(

)1(

)()))(((

)1()))(((

)1()))(((

)1())())(((

)(

1

0

1

0

1

0

1

0

11

0

1

0

1

0

111

0

11

0

11

0

1

1

1

1111

−−−

−−−

−−

−−−

−−

−−

−

+
−

++++

−++−+=

+++−−=

++++−=

+++

−+=

+++−+=

+++=

+++=

+=

cccccccccckcc

ccccccccckcc

cccccckcc

c

ckccckkkkcc

cckkkkkcc

cckkkcc

ckckckc

kkkkk

qvqsvkvqvqsvqrqs

vvkqvqsqvqksqrqs

vvkqvkvqsqrqs

vvk

qvqsqvrqqsqs

vvkqvvrqqsqs

vvkqrqqsqs

vvkqqrqqss

vrqqsr

 

Let  

1

0

1

00

−

−

−=

+−=

cccccc

cccc

qvqsvV

vqvqsvV
 

We obtain 
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It is important to point out that, since vc, qc and sc are 

constants, so are V0 and Vc.  Furthermore, we recursively 

define  
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Substituting in E.3-3, we have 
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These equations are incremental formulas. For a pair of 

key VQS structures T0=[v0, q0, s0] and Tn=[vn, qn, sn], any 

vector r can be initially transformed by 
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Then it can be calculated based on the transformed vector 

incrementally in the previous step: 
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Assume ],[ ccc uwq =  and uc=<xc, yc, zc>. If quaternions 

are multiplied out, the second equation in E.3-4 then 

becomes 
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Hence equation E.3-4 can be rewritten as  
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where I is an identity matrix and  

)
~

2ˆ2)(( 22

ccccccc UwUIuwsM ++−=   

is a 3x3 matrix. ‘^’ and ‘~’ are ‘head’ and ‘tilde’ operators 

respectively that convert dot and cross products between 

vectors into multiplications of a matrix and a vector.  

Note that Mc is constant matrix since its elements are all 

constants. It can be pre-computed once for any given pair 

of key frames and stored with the VQS structure. When it 

comes to run-time transformation of any vector r, the next 

step (k+1) becomes a multiplication with a 3x3 matrix 

and then a vector addition, which takes only 9 

multiplications and 9 additions from the previous step (k). 

Compared with E.1-1, it cuts the computational cost to 

less than half. 

But wait, there is more: All interpolations are included for 

free. There is absolutely no additional cost for Lerp, Slerp 

or exponential interpolations. 

4. Implementation 

We now illustrate how VQS incremental transformation is 

implemented as a C++ class. To simplify the discussion, 

we assume that a set of utility functions (similar to those 

in DirectX libraries) that support the basic vector, matrix 

and quaternion classes and operations is available. The 

incremental VQS class (iVQS) definition includes four 

private member variables to store the constant 

incremental matrix (Mc), translation vectors (Vk and Vc) 

and the total number of interpolation steps (Count). The 

class also provides three public member functions that 

initialize the structure, step through interpolations and 

actually transform a given vector.  

The pseudocode of the class is illurstrated in List 4-1. The 

member function implementation is straightforward based 

on equations in section 3 and therefore skipped. 

 

class iVQS 

{ 

   private:  

Matrix Mc;     // Incremental matrix; 

Vector Vk, Vc; // Incremental translation; 

int     Count;   // Number of interpolation steps; 

 

   public: 

// This function initializes the iVQS structure.  

// [v0, q0, s0] and [vn, qn, sn] are key frame VQS.   

// n represents desired incremental steps. 

// The function computes and stores incremental  

// constants Mc and Vc. 

void iVQSInit(Vector& v0,  Quaternion& q0,  float s0, 

 Vector& vn, Quaternion& qn,  float sn,   int n); 

 

// This function steps to the next interpolated VQS and  

// increment the count. It is called once and only once  

// for each transformation frame. The function returns  

// FALSE at the end of n iterations or TRUE otherwise. 

Boolean iVQSStep(void); 

 

// This function returns a transformed vector based on  

// rk from previous step. 

Vector iVQSTransform(Vector& rk); 

}; 

List 4-1:  iVQS class definition 

5. Error analysis 

As mentioned earlier, this approach reduces the 

computational expense of VQS transformation of any 

vector to less than half. Yet it comes with Lerp, Slerp and 

Exponential interpolations for translation, quaternion and 

scaling factor at no cost at all. Since the method only uses 

additions and multiplications, the calculation is immune 

to numerical instability. 

However, since the method is based on incremental steps 

over a constant interval, the implementation on any 

hardware and software platforms would introduce some 

cumulative floating-point round-off errors. In other 

words, transformations by this approach would inevitably 

deviate from the path of the original VQS interpolations.  

To quantify accumulated errors and examine the 

“drifting” behavior, we designed a series of tests over 200 

pairs of VQS structures that contain randomized 

parameters within controlled ranges ([-999.0 : 999.0] for 

translations, [1o : 89o] for rotations and [0.1 : 10.0] for 

uniform scaling). 200 vertices are first transformed by the 

original VQS with Lerp, Slerp and Exponential 

interpolations through 100 fixed steps between VQS pairs. 

Then the incremental approach is applied under the same 

test conditions. 

List 5-1 contains the pseudo code for the error analysis. 



1. Generate 200 random vectors; 

2. Create 200 pairs of random VQS in a specified range; 

3. For each pair of VQS, repeat: 
3.1. Interpolate by regular and incremental 

algorithms in 100 steps. 

3.2. At each step, do the following: 
3.2.1. Transform each of 200 vectors by 

both interpolated VQS structures. 

3.2.2. For each pair of resulting vectors, 
calculate the errors in between. 

3.2.3. Record the maximum and average 

error at each step. 

4. Print the record errors. 

List 5-1: Error analysis pseudo code 

Let r = <x, y, z> be a vector transformed by a VQS 

structure. Let r’ = <x’, y’, z’ > be the vector transformed 

by the incremental approach from the same vector with 

the same interpolation steps. For each pair of r and r’, 

four types of relative errors are computed as follows 
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where xσ , yσ and zσ  are dircrepancies of x, y and z 

components between vectors processed by two different 

approaches. dσ  is the distance between them. To avoid 

the “magnitude effect”, all errors are normalized by the 

length of the vector. The maximum component errors 

among all 200 transformed vectors are recorded at each 

interpolation step. For the distance, we log both maximum 

and average errors at each step. The numbers are depicted 

in Figure 5-1 and Figure 5-2. 
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Figure 5-1: Cumulative round-off errors (components) 
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Figure 5-2: Cumulative round-off errors (distances) 

As expected, locations and components of incrementally 

interpolated VQS transformations tend to drift away from 

original VQS transformations. The maximum cumulative 

round-off errors increase with the number of interpolation 

steps between the starting and ending VQS structures.  

However, the tests also indicate that this drifting behavior 

is insignificantly trivial. The average relative errors in 

distance is less than 0.001% with 100 steps of incremental 

interpolation and transformation.  Even in the worst cases, 

all maximum round-off errors for components and 

distance are below 0.01%.  

Note that the single-precision 32-bits floating point was 

used in the above tests. The round-off errors should be 

further reduced under double-precision 64-bits operations.  

6. Conclusion 

As pointed out earlier, the proposed incremental VQS 

method in this paper is fast and accurate enough for most 

animations in 3D real-time simulation and video game 

software. However, since the transformation by the 

incremental VQS can not be easily concatenated in a 

hierarchical structure,  it is more suitable for objects with 

a “flat structure”. That is, the animation key frames would 

have to be specified with respect to the world coordinate 

system. Furthermore, although the method cuts down the 

computational cost to less than an half, it will likely 

double the storage for object geometric data since vertices 

from the previous step must be saved for transformations 

in the next frame.  
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