
VQS Transformation with an Incremental Approach

Xin Li
Computer Science Department

Digipen Institute of Technology

xli@digipen.edu

Abstract

This paper presents an incremental method to 3D

transformation by VQS structures. For interpolated

scaling, rotation and translation between two animation

key frames, with constant intervals in size, angle and

distance, the proposed approach reduces the VQS

transformation cost by more than an half. Moreover, all

interpolations for VQS key frames are performed

implicitly at no cost. In other words, the expensive

trigonometric functions in quaternion Slerp and

exponential functions in scalar interpolation are

completely eliminated from the process. The method is

fast, accurate, numerically stable and also preserves all

geometric characteristics of the original transformation

and interpolation algorithms.

1. Introduction

In 3D graphics, quaternions are often considered as the

“weapon of choice” for rotations [1]. Similar to the

homogenous matrix approach, the rotation by a

quaternion is combined with a translation vector and a

uniform scaling factor. The operation is referred as

transformation by a VQS structure [3].

Mathematically, a VQS structure is defined as triplet T =

[v, q, s], where v=[xv, yv, zv, 0] is a “pure quaternion”

representing a translation vector, q=<u, w> is a

quaternion with u=<xu, yu, zu> and s is a uniform scaling

factor. A transformation of any given “pure quaternion”

r=<x, y, z, 0> is then calculated by operations defined on

quaternions, namely multiplication, scale product and

addition. It results in another pure quaternion r′ :

vqrqszyxr +=>′′′<=′ −)(0,,, 1

That is, a VQS transformation is to rotate by q, scale by s

and then translate by v. It is easy to verify that the result

is equivalent to the matrix transformation. In practice, to

save the computational time, quaternions are multiplied

out to yield

vruwururuwsr +×+⋅+−=′))(2)(2)((22 E.1-1

where v, r and r′ are treated as 3D vectors. The
transformation by a VQS in this approach takes 28

multiplications and 17 additions/subtractions.

2. VQS Interpolation

In real-time simulation and video game software, VQS

structures are often created as key frames to reduce the

space occupied by animation data. At run_time, the

intermediate transformations are generated by

interpolating between key frames. If we assume T0=[v0,

q0, s0] and Tn=[vn, qn, sn] are two VQS key frames, then

Tt=[vt, qt, st], for any []0.1:0.0∈t , can be computed by the

following three interpolation algorithms:

(1) Lerp for translation:

 nt tvvtv +−= 0)1(

(2) Slerp for rotation:

 []nt qtqtq)sin()sin(
)sin(

1
0 αααα +−= E.2-1

(3) Exponential interpolation for scaling:

 0
0

)(s
s

s
s tn
t =

Tt = [vt, qt, st] is then used for transformation to create a

smooth motion. Note that the exponential interpolation

(instead of linear) is used for scaling factors. This is

intended to compensate the non-linearity of delusional

perception of the human eye since it is more sensitive to

changes in smaller objects than that in larger ones. Figure

2-1 compares the linear and exponential approaches

between scales of 0.1 and 10 in 100 interpolation steps.

0

2

4

6

8

10

1 11 21 31 41 51 61 71 81 91

Interpolation Steps

S
c
a
lin
g
 F
a
c
to
rs

Linear
Exponential

Figure 2-1: Comparison of Linear and exponential scaling

3. Incremental VQS interpolation

Now, we consider the incremental approach to VQS

interpolation. That is, we further assume that, when

interpolating between T0 and Tn, it can be done

incrementally through n steps with a fixed interval for

locations, angles and scales. This allows us to change t

from 0.0 to 1.0 with a constant interval ∆t=1/n and obtain

integer k such that

t = k∆t = k/n, for k=0, 1, … , n.

Under these assumptions, after replacing t with k/n,

equations in E.2-1 become

nvvvvkvv ncck /)(where , 00 −=+=

])sin(),[cos(e wher,0 uqqqq c

k

ck ββ== E.3-1

nn
c

k

ck s

s
ssss /1

0
0)(where, ==

We refer those equations in E.3-1 as “incremental

interpolations” for translation, rotation and scaling

respectively. The conversions of the first and last

equations are straightforward. However, the second

equation for quaternion interpolation requires some

explanations. Basically, it converts the original Slerp

interpolation into its incremental form. In other words,

E.3-1 says that the slerped quaternion qk can be computed

by multiplication of k-th power of a constant quaternion

qc and q0, where β=α/n and u is a unit vector defined by
components of q0 and qn as

u = (w0un – wnu0 + u0×un)/sin(α).

The derivation is discussed in full length in [4].

Let T0=[v0, q0, s0] be the initial VQS. Equations in E.3-1

allow to rewrite the incrementally-interpolated VQS at

step k+1 as Tk+1= [vk+1, qk+1, sk+1] with recursive functions

of Tk = [vk, qk, sk] from the previous interpolation step.

That is, if we assume [v0, q0, s0] at k=0, then we always

have the following at any k=1, … , n−1:

nvvvvvvvkv nckcck /)(,)1(001 −=+=++=+

])sin(),[cos(,0

1

1 uqqqqqq ckc

k

ck ββ=== +
+ E.3-2

nn
ckc

k

ck
s

s
ssssss /1

0

0

1

1)(, === +
+

Note that, in E.3-2, all vc, qc and sc are constants and

therefore can be pre-computed once for given T0, Tn and

interpolation steps n.

With the recursive definitions, transformations by a

sequence of interpolated VQS structures, from T0 to Tn in

n steps of fixed intervals on any arbitrary vector r, can be

written as

1

1

1111111

0000

)(],,[

],,[

+
−

+++++++ +==

=

kkkkkkkk vrqqsrsqvr

rsqvr

Replacing with recursive definitions for translation,

quaternion and scaling factor at k+1, we obtain

)(

)1(

)1()(

)1(

)()))(((

)1()))(((

)1()))(((

)1())())(((

)(

1

0

1

0

1

0

1

0

11

0

1

0

1

0

111

0

11

0

11

0

1

1

1

1111

−−−

−−−

−−

−−−

−−

−−

−

+
−

++++

−++−+=

+++−−=

++++−=

+++

−+=

+++−+=

+++=

+++=

+=

cccccccccckcc

ccccccccckcc

cccccckcc

c

ckccckkkkcc

cckkkkkcc

cckkkcc

ckckckc

kkkkk

qvqsvkvqvqsvqrqs

vvkqvqsqvqksqrqs

vvkqvkvqsqrqs

vvk

qvqsqvrqqsqs

vvkqvvrqqsqs

vvkqrqqsqs

vvkqqrqqss

vrqqsr

Let

1

0

1

00

−

−

−=

+−=

cccccc

cccc

qvqsvV

vqvqsvV

We obtain

cckcck kVVqrqsr ++= −
+ 0

1

1 E.3-3

It is important to point out that, since vc, qc and sc are

constants, so are V0 and Vc. Furthermore, we recursively

define

ckccck

cccc

VVVVkVkVVV

vqvqsvV

+=+−+=+=

+−=

−

−

100

0

1

00

)1(

Substituting in E.3-3, we have

kckcck

ckk

Vqrqsr

VVV

+=

+=
−

+

−

1

1

1

 E.3-4

These equations are incremental formulas. For a pair of

key VQS structures T0=[v0, q0, s0] and Tn=[vn, qn, sn], any

vector r can be initially transformed by

cccc vqvqsvV

vrqqsrsqvr

+−=

+==
−

−

1

000

0

1

0000000)(],,[

Then it can be calculated based on the transformed vector

incrementally in the previous step:

L

L

ckkkckcckkkk

cccc

cccc

VVVVqrqsrsqvr

VVVVqrqsrsqvr

VVVVqrqsrsqvr

+=+==

+=+==

+=+==

+
−

++++

−

−

1

1

1111

121

1

12222

010

1

01111

 ,)(],,[

 ,)(],,[

 ,)(],,[

Assume],[ccc uwq = and uc=<xc, yc, zc>. If quaternions

are multiplied out, the second equation in E.3-4 then

becomes

kkccckckccck Vruwururuwsr +×+⋅+−=+))(2)(2)((22

1

Define the following matrices based on uc:

0

0

0
~

 and ˆ

2

2

2

cc

cc

cc

c

ccccc

ccccc

ccccc

c

xy

xz

yz

U

zzyzx

zyyyx

zxyxx

U

−
−

−
==

Hence equation E.3-4 can be rewritten as

kkc

kkcckckccck

VrM

VrUwrUIruwsr

+=

+++−=+)
~

2ˆ2)((22

1
 E.3-5

where I is an identity matrix and

)
~

2ˆ2)((22

ccccccc UwUIuwsM ++−=

is a 3x3 matrix. ‘^’ and ‘~’ are ‘head’ and ‘tilde’ operators

respectively that convert dot and cross products between

vectors into multiplications of a matrix and a vector.

Note that Mc is constant matrix since its elements are all

constants. It can be pre-computed once for any given pair

of key frames and stored with the VQS structure. When it

comes to run-time transformation of any vector r, the next

step (k+1) becomes a multiplication with a 3x3 matrix

and then a vector addition, which takes only 9

multiplications and 9 additions from the previous step (k).

Compared with E.1-1, it cuts the computational cost to

less than half.

But wait, there is more: All interpolations are included for

free. There is absolutely no additional cost for Lerp, Slerp

or exponential interpolations.

4. Implementation

We now illustrate how VQS incremental transformation is

implemented as a C++ class. To simplify the discussion,

we assume that a set of utility functions (similar to those

in DirectX libraries) that support the basic vector, matrix

and quaternion classes and operations is available. The

incremental VQS class (iVQS) definition includes four

private member variables to store the constant

incremental matrix (Mc), translation vectors (Vk and Vc)

and the total number of interpolation steps (Count). The

class also provides three public member functions that

initialize the structure, step through interpolations and

actually transform a given vector.

The pseudocode of the class is illurstrated in List 4-1. The

member function implementation is straightforward based

on equations in section 3 and therefore skipped.

class iVQS

{

 private:

Matrix Mc; // Incremental matrix;

Vector Vk, Vc; // Incremental translation;

int Count; // Number of interpolation steps;

 public:

// This function initializes the iVQS structure.

// [v0, q0, s0] and [vn, qn, sn] are key frame VQS.

// n represents desired incremental steps.

// The function computes and stores incremental

// constants Mc and Vc.

void iVQSInit(Vector& v0, Quaternion& q0, float s0,

 Vector& vn, Quaternion& qn, float sn, int n);

// This function steps to the next interpolated VQS and

// increment the count. It is called once and only once

// for each transformation frame. The function returns

// FALSE at the end of n iterations or TRUE otherwise.

Boolean iVQSStep(void);

// This function returns a transformed vector based on

// rk from previous step.

Vector iVQSTransform(Vector& rk);

};

List 4-1: iVQS class definition

5. Error analysis

As mentioned earlier, this approach reduces the

computational expense of VQS transformation of any

vector to less than half. Yet it comes with Lerp, Slerp and

Exponential interpolations for translation, quaternion and

scaling factor at no cost at all. Since the method only uses

additions and multiplications, the calculation is immune

to numerical instability.

However, since the method is based on incremental steps

over a constant interval, the implementation on any

hardware and software platforms would introduce some

cumulative floating-point round-off errors. In other

words, transformations by this approach would inevitably

deviate from the path of the original VQS interpolations.

To quantify accumulated errors and examine the

“drifting” behavior, we designed a series of tests over 200

pairs of VQS structures that contain randomized

parameters within controlled ranges ([-999.0 : 999.0] for

translations, [1o : 89o] for rotations and [0.1 : 10.0] for

uniform scaling). 200 vertices are first transformed by the

original VQS with Lerp, Slerp and Exponential

interpolations through 100 fixed steps between VQS pairs.

Then the incremental approach is applied under the same

test conditions.

List 5-1 contains the pseudo code for the error analysis.

1. Generate 200 random vectors;

2. Create 200 pairs of random VQS in a specified range;

3. For each pair of VQS, repeat:
3.1. Interpolate by regular and incremental

algorithms in 100 steps.

3.2. At each step, do the following:
3.2.1. Transform each of 200 vectors by

both interpolated VQS structures.

3.2.2. For each pair of resulting vectors,
calculate the errors in between.

3.2.3. Record the maximum and average

error at each step.

4. Print the record errors.

List 5-1: Error analysis pseudo code

Let r = <x, y, z> be a vector transformed by a VQS

structure. Let r’ = <x’, y’, z’ > be the vector transformed

by the incremental approach from the same vector with

the same interpolation steps. For each pair of r and r’,

four types of relative errors are computed as follows

||

||
,

||

||
,

||

||
,

||

||

r

rr

r

zz

r

yy

r

xx
dyyx

′−=
′−=

′−=
′−= σσσσ

where xσ , yσ and zσ are dircrepancies of x, y and z

components between vectors processed by two different

approaches. dσ is the distance between them. To avoid

the “magnitude effect”, all errors are normalized by the

length of the vector. The maximum component errors

among all 200 transformed vectors are recorded at each

interpolation step. For the distance, we log both maximum

and average errors at each step. The numbers are depicted

in Figure 5-1 and Figure 5-2.

Maximum Component Errors

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1 11 21 31 41 51 61 71 81 91 101

Interpolation Steps

E
rr
o
rs

x
y
z

Figure 5-1: Cumulative round-off errors (components)

Distance Errors

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1 11 21 31 41 51 61 71 81 91 101

Interpolation Steps

E
rr
o
rs

Maximu
m
Average

Figure 5-2: Cumulative round-off errors (distances)

As expected, locations and components of incrementally

interpolated VQS transformations tend to drift away from

original VQS transformations. The maximum cumulative

round-off errors increase with the number of interpolation

steps between the starting and ending VQS structures.

However, the tests also indicate that this drifting behavior

is insignificantly trivial. The average relative errors in

distance is less than 0.001% with 100 steps of incremental

interpolation and transformation. Even in the worst cases,

all maximum round-off errors for components and

distance are below 0.01%.

Note that the single-precision 32-bits floating point was

used in the above tests. The round-off errors should be

further reduced under double-precision 64-bits operations.

6. Conclusion

As pointed out earlier, the proposed incremental VQS

method in this paper is fast and accurate enough for most

animations in 3D real-time simulation and video game

software. However, since the transformation by the

incremental VQS can not be easily concatenated in a

hierarchical structure, it is more suitable for objects with

a “flat structure”. That is, the animation key frames would

have to be specified with respect to the world coordinate

system. Furthermore, although the method cuts down the

computational cost to less than an half, it will likely

double the storage for object geometric data since vertices

from the previous step must be saved for transformations

in the next frame.

References:

[1] Ken Shoemake, “Animating Rotation with Quaternion

Curves”, Computer Graphics, Volume 19, Number 3,

1985.

[2] David Eberly, “Quaternion Algebra and Calculus”,

http://www.geometrictools.com/Documentation/

Quaternions.pdf , September 27, 2002.

[3] Warren Robinett and Richard Holloway, “The Visual

Display Transformation for Virtual reality”, Technical

Report (TR94-031), UNC-Chapel Hill, Sept. 1994.

[4] Xin Li, “To Slerp, Or Not to Slerp”, Game Developer

Magazine, August, 2006.

[5] Jonathan Blow, “Hacking Quaternions”, Game

Developer Magazine, March 2002.

[6] Jonathan Blow, “Understanding Slerp, Then Not Using

It”, Game Developer Magazine, April 2004.

[7] Thomas Busser, “PolySlerp, A Fast and Accurate

Polynomial Approximation of Slerp”, Game Developer

Magazine, February, 2004.

