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Abstract 
In this paper, we present a novel methodology for 
controlling games without the need of expensive 
and dedicated image processing hardware. We 
present an alternative to the current spatial control 
schemes by using point-light detection with a 
webcam. Our framework combines time-based 
image differencing, window-sum searching, and 
history-based point-culling to identify the correct 
object in a scene. These techniques allow detection 
of points in a scene, spatial positioning in three 
dimensions, and easily extrapolated acceleration 
and velocity data. We created a controller that 
proved efficient functionality similar in ways to the 
Sony EyeToy [7] or the Nintendo Wiimote [5].  
Unlike the EyeToy, our application is independent 
of background noise, as it does not depend 
exclusively on optical flow [3] or other time-based 
difference algorithms. Additionally, unlike the 
Wiimote, our controller is inexpensive and 
replaceable, while providing a good deal of 
functionality. 
 
Introduction 
Computer Vision has been evolving recently in the 
computer gaming sector.  Cameras have been 
added to many devices as a peripheral controller of 
some sort, going back to the GameBoy Camera in 
1998. With the recent developments of the Sony 
EyeToy [7] (Figure 1) games, the Nintendo DS 
with a touch screen, and the Nintendo Wii with an 
accelerometer-based controller, it is clear that 
gamers want different kinds of ways to play games. 
Intuitively, the natural tendency of a game player is 
to physically move the body attempting to control 
the game.   

In this paper, we present an alternative to the 
current spatial control schemes by using point-light 
detection with a common webcam.  The necessary 
hardware consists of a common webcam and an 
object to support the lights that we want to detect in 
the application. Our framework combines a number 
of techniques such as time-based image 
differencing, window-sum searching, and history-
based point-culling to identify the correct object in 

the scene each frame.   These techniques allow for 
not only detection of the points in the scene, but 
also allows for spatial positioning in three 
dimensions, and easily extrapolated acceleration 
and velocity data.   

With all this information coming from a very 
simple object, it could prove an inexpensive and 
fun way to make computer-vision based games that 
people can enjoy on the PC or console.   One of the 
large limitations of these kinds of games is that 
they require expensive and specialized hardware 
[4]. 

 

 
Figure 1 The EyeToy from Sony 

 
Hardware 
There were some careful considerations when 
choosing the hardware we required.  We needed a 
camera to supply us with a video feed.  The camera 
needed to be able to sustain a playable frame rate at 
a reasonable resolution for image processing, with 
as few artifacts and degradations as possible.  For 
this we chose the Logitech Orbit MP. While the 
picture quality is exceptional, the camera is only 
able to output 15 frames per second as it was 
designed primarily for low frame rate applications 
(such as an internet webcam). 

Second was the decision on what physical device to 
use to control the game.  By comparing different 
projects and applications [5, 7, 3], we found that 
most of them used simple methods for image 
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detection, relying solely on movement detection 
other than object recognition. The EyeToy (Figure 
1) [7], for example, uses simple time-difference 
motion detection, accomplished by bit-masking the 
image each frame to detect movement. Similarly, 
another project attempted to control a labyrinth 
game used a webcam to sense tilt (Figure 2) by 
examining the environment [3]. Instead of a simple 
image-difference algorithm like the EyeToy, it used 
image flow to detect movement.  Even though it is 
a much more robust approach, we wanted a more 
useful tool that has the ability to correctly detect 
the movement of a specified object. 

 

 
Figure 2 Tilt Sensor on a Tablet PC 

 
The Nintendo Wiimote (Figure 3) is close to what 
we wanted, and is capable of spatial detection as 
well as acceleration readings.  Unfortunately, it is a 
very specialized and expensive piece of hardware, 
designed exclusively for the Nintendo Wii.   
 

 
Figure 3 The Nintendo Wii Remote 

 
We chose the paddle shape (Figure 4), a staple of 
classic games.  To make our job easier, we decided 
to circumvent any complex shape-detection 
algorithms.  Our assumptions were that if we can 
detect the endpoints of the paddle, we can recreate 
it in software.  So we added a bright red LED on 
each end of the paddle, and chose to develop 
algorithms to detect the endpoints’ positions, and 
pass them off to the game.  
 
 

 
Figure 4 Our Device 

 
 
There are a few key advantages to this approach.  
First, using a bright light makes the detection 
largely lighting and noise independent, which is a 
decided advantage over existing computer vision 
implementations [4, 6, 7]. Second, the brightness of 
each light and distance between the lights can be 
used for detection not only in 2D but 3D should the 
need arise.  

One of the interesting issues we encountered was 
how the camera perceives color.  While the LED’s 
may look like a very solid red to the human eye, it 
can clearly be seen in this image that to the camera, 
they are very white with a red outline.  This effect 
was unexpected and initially caused problems in 
the detection algorithm.  The camera’s exposure 
time caused bleaching in the color buffer to occur 
due to the intensity of the lights.   

 
Framework Architecture 
We needed a framework that allows us to rapidly 
prototype our design, and implement some test 
cases to see how it performed.  C# was an easy 
choice, given its ease of UI design, integrated 
garbage collector, and built-in rendering controls.  
Having GDI+ immediately available was very 
handy to visualize our algorithms performance.   

The next challenge in developing something that 
we could immediately use was to figure out a way 
to interface with the hardware.  This took quite a 
bit of research and trial and error testing to figure 
out a convenient and fast way to capture raw 
images from the camera.  We eventually settled on 
a wrapper around the avicap32.dll library [2].  It 
allowed us to do streaming video and provided a 
callback to get the data each frame (compared to 
some libraries that only displayed the video without 
giving you access to it).  C# also allowed us to do 
some easy Bitmap operations intrinsically.  Such as 
stretching the image, and saving and loading from 
files.  This enabled us to add a simple but useful 
playback functionality to demo the project. 

 
Point Detection Algorithm 
Once an image has been captured by the camera, it 
is sent to the image processor.  The entire detection 
process is done in a single pass over the image for 



speed purposes (a 400x300 image is 120000 pixels 
per frame, thus the need for optimization).  A full-
scene pass is necessary as we cannot be guaranteed 
the wand will not move quickly across the scene.  
A single full pass also maintains a steady process 
time.  

The algorithm is split up into three main steps:  
First, use temporal differences to eliminate known 
background pixels [1].   Second, identify points of 
interest that might be our LED’s.  Last, decide 
which two points are most likely to be the LED’s 
by culling any points that seem unlikely.  

We knew that to make this work in real time using 
software on the CPU we had to put all our 
processing of the raw data into one pass (or less), 
because having to search through 120000 pixels 
multiple times will begin to encroach upon the time 
necessary for the rest of the application (game 
logic, physics, etc).  Our initial goal given the lack 
of dedicated hardware or threading was ten frames 
per second.  So to reduce searching time we started 
with the idea of using a simple window search to 
categorize regions at a time.  

The first step was to extract moving objects from 
the background.  Thus, a calibration image is shot 
right when the program begins, to rule out anything 
that will likely remain still in the image.  This 
stored image is compared within a threshold (to 
account for subtle variations and noise in the 
image) to new images taken during the course of 
the application.  Any pixels too closely related to 
the calibration image are thrown out.  This greatly 
reduces the search space of the algorithm in the 
next two steps.   

While this technique is excellent in controlled 
conditions, it does have drawbacks.  Dramatically 
changing lighting, background noise (like people 
walking by), or having the wand in the frame to 
begin with nullify any benefits gained.   
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Figure 5 Color Window Representation 
 

In the second step, we detect possible points in the 
image that might be our LED’s.  Since we know we 
are working with a very bright light we know we 
can make some assumptions about what we are 
going to be getting as input.  The first is that we 
know that the red LED light will have a gradient 

falloff as we move away from the center of the 
LED.  Thus we made the search window (Figure 5) 
look for the color with some offset to increase out 
chances of finding them.  We also added test 
conditions to throw away any data outside the 
specific color range we are looking for.  That way 
we are eliminating the white light and 
predominantly green and blue colors.  Given the 
window, we take a sum of all pixels that pass the 
tests, and if they are above a certain threshold (50-
70%) of the maximum possible, we accept the 
region as a point detected. 

Our original settings produced unreliable results, 
with color values for the background changing 
more than expected.  We noticed that the camera 
itself did its own image processing in the 
background.  The gain, exposure, and brightness 
settings on the camera greatly affected the results 
of the algorithm.  Adjusting these values to the 
proper settings solved this problem.  Notice the 
change in coloration in the next two images (Figure 
6 and Figure 7).   

 

 
Figure 6 Tinted Exposure Settings 

 

 
Figure 7 Even Exposure Settings 

 
The final part of the process decides which two 
points created by the first step are most relevant.  
No one metric sufficed, so we combined several 
simple algorithms to cull the points.  The next 



image (Figure 8) shows what a raw image might 
look like: 
 

 
Figure 8 Unfiltered Image 

 
Each green circle on the image is a potential point 
that satisfies the color requirements by the first 
step. The ends of the wand are detected.  
Unfortunately, so are many other data points on the 
hand and face. We needed an algorithm to 
differentiate between relevant and irrelevant data. 

The first step of the culling process eliminates 
groups of points too close to each other (Figure 9). 
We compare the distance of each point to.  
Pseudocode follows:   

 
For Each Point in PointList 
  For Each OtherPoint in PointList 
    If Difference < Threshold 
      Remove OtherPoint  
    EndIf 
  EndFor 
EndFor 
 

 
Figure 9 Image with Clusters Removed 

 
Now we have evenly spaced regions of interest 
identified.  We still have the LED’s captured, but 
there is still some extra data in the list. While the 
history is only one deep (only the last frame is 
tracked), it is sufficient for removing this extra 
data.  Given the history of the last successful points 
found, we can now rule out any points that are too 
far away from the last found points. The 

assumption in this step is that the player will not be 
moving the wand very far per frame, thus any 
points too far removed can be eliminated. Some 
Pseudo code for this process is as follows: 
 
For Each Point in History 
  For Each Point 
    If Diff < Threshold 
      If Color is closer to Ideal 
        Choose Point 
      EndIf 
    EndIf 
  EndFor 
EndFor 
 

 
Figure 10 History Filtering Applied 

 
Finally we see something we can work with 
(Figure 10).  We pass this data to the game logic, 
and record the new history points. 

Now, the images shown have been ideal, in that 
there actually were two points on the screen to 
detect.  One of the major issues we came across is 
that we aren’t guaranteed this condition.  The wand 
can be half or fully off of the screen as the user 
plays.  Despite this error, we need to maintain our 
point history so that future detection continues to 
work.  To combat this, we have several cases for 
each error condition to keep the points on the 
screen.  We handle these cases by guaranteeing two 
evenly spaced points remain on the screen at all 
times for detection to resume when both points are 
detected again.  

Lastly, we need initial points, a set that can be used 
at startup before we have identified the wand on the 
screen as the history to track the wand in the future.  
Thus when the application starts a dummy set of 
points are placed on the screen in a predefined 
location.  When the wand is moved in proximity 
with them, it latches on and the true detection can 
begin.  After we find the points, we pass it to the 
Game Logic and physics systems. 

 
Physics Integration 
After the image is processed the data is sent to a 
fairly standard physics system to form some kind 



of object.  For game we produced, we created a line 
object stretched between the two points that would 
collide with other game objects.  This could easily 
be extended by using the two points given to be 
control points for any number of objects (a wand, a 
sword, a handle). Note that even in two dimensions 
we already have some sense of depth from the size 
of the line produced. While the example game 
operates in two dimensions, the transition to 3D 
would be relatively simple. 

One optimization that needs to be considered for 
collision is to make the object they are controlling 
smoothly animate (rather than snapping when new 
data is acquired).  Using a history of point 
locations, velocity and acceleration could be 
derived, allowing for smooth animation in-game to 
compensate for slow data from the webcam.  This 
prevents clipping of the objects it will collide with.  
 
Test Case: Bricks 
The prototype project we produced is a recreation 
of the classic arcade game Bricks.  The wand acts 
as the paddle (in blue), reflecting the ball (in white) 
in the direction that the user wants.  Figure 11 
shows an image of the game in action.   
 

 
Figure 11 Game Overlay Displayed 

 
Conclusions 
Many of today’s homes have webcams, and for the 
price of a pair of LED lights and a way to power 
them, a simple, fun, and highly interactive game 
can be produced without the need for specialized 
hardware like the Wiimote or dependant circuitry.  
It is a flexible interface providing a sufficient 
amount of information in a very small overhead. 

Using a simple but known object for detection 
purposes allows for very fast and optimized 
algorithms to be run, and the possibilities for the 
number and types of game play are large.  Uses 
from controlling our simple line, to complex 
movements in three dimensions and gesture 
recognition are easily seen. Playing musical 
instruments, sword fighting, aiming, steering, and 

fighting are all things that could easily be done 
with this process.      

Further refinements to the algorithm can be made, 
depending on the type of accuracy needed in the 
application. Velocity and acceleration tracking to 
interpolate movement between frames would be 
useful. Keeping a deeper history of movement 
would aid in this. Tracking the relative intensities 
of each light in addition to the length between them 
would be useful in determining distance and tilt 
away from the camera if that information was 
needed.    
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