
Optimized Spatial Point Detection for Computer Vision
in Gaming

Chance Lyon, Noah Hopson –Walker, Adam Demers

DigiPen Institute of Technology

Redmond, Washington, USA

E-mail: {clyon|ademers|nhopsonw}@digipen.edu

Abstract
In this paper, we present a novel methodology for
controlling games without the need of expensive
and dedicated image processing hardware. We
present an alternative to the current spatial control
schemes by using point-light detection with a
webcam. Our framework combines time-based
image differencing, window-sum searching, and
history-based point-culling to identify the correct
object in a scene. These techniques allow detection
of points in a scene, spatial positioning in three
dimensions, and easily extrapolated acceleration
and velocity data. We created a controller that
proved efficient functionality similar in ways to the
Sony EyeToy [7] or the Nintendo Wiimote [5].
Unlike the EyeToy, our application is independent
of background noise, as it does not depend
exclusively on optical flow [3] or other time-based
difference algorithms. Additionally, unlike the
Wiimote, our controller is inexpensive and
replaceable, while providing a good deal of
functionality.

Introduction
Computer Vision has been evolving recently in the
computer gaming sector. Cameras have been
added to many devices as a peripheral controller of
some sort, going back to the GameBoy Camera in
1998. With the recent developments of the Sony
EyeToy [7] (Figure 1) games, the Nintendo DS
with a touch screen, and the Nintendo Wii with an
accelerometer-based controller, it is clear that
gamers want different kinds of ways to play games.
Intuitively, the natural tendency of a game player is
to physically move the body attempting to control
the game.

In this paper, we present an alternative to the
current spatial control schemes by using point-light
detection with a common webcam. The necessary
hardware consists of a common webcam and an
object to support the lights that we want to detect in
the application. Our framework combines a number
of techniques such as time-based image
differencing, window-sum searching, and history-
based point-culling to identify the correct object in

the scene each frame. These techniques allow for
not only detection of the points in the scene, but
also allows for spatial positioning in three
dimensions, and easily extrapolated acceleration
and velocity data.

With all this information coming from a very
simple object, it could prove an inexpensive and
fun way to make computer-vision based games that
people can enjoy on the PC or console. One of the
large limitations of these kinds of games is that
they require expensive and specialized hardware
[4].

Figure 1 The EyeToy from Sony

Hardware
There were some careful considerations when
choosing the hardware we required. We needed a
camera to supply us with a video feed. The camera
needed to be able to sustain a playable frame rate at
a reasonable resolution for image processing, with
as few artifacts and degradations as possible. For
this we chose the Logitech Orbit MP. While the
picture quality is exceptional, the camera is only
able to output 15 frames per second as it was
designed primarily for low frame rate applications
(such as an internet webcam).

Second was the decision on what physical device to
use to control the game. By comparing different
projects and applications [5, 7, 3], we found that
most of them used simple methods for image

mailto:%7Bclyon|ademers|nhopsonw%7D@digipen.edu

detection, relying solely on movement detection
other than object recognition. The EyeToy (Figure
1) [7], for example, uses simple time-difference
motion detection, accomplished by bit-masking the
image each frame to detect movement. Similarly,
another project attempted to control a labyrinth
game used a webcam to sense tilt (Figure 2) by
examining the environment [3]. Instead of a simple
image-difference algorithm like the EyeToy, it used
image flow to detect movement. Even though it is
a much more robust approach, we wanted a more
useful tool that has the ability to correctly detect
the movement of a specified object.

Figure 2 Tilt Sensor on a Tablet PC

The Nintendo Wiimote (Figure 3) is close to what
we wanted, and is capable of spatial detection as
well as acceleration readings. Unfortunately, it is a
very specialized and expensive piece of hardware,
designed exclusively for the Nintendo Wii.

Figure 3 The Nintendo Wii Remote

We chose the paddle shape (Figure 4), a staple of
classic games. To make our job easier, we decided
to circumvent any complex shape-detection
algorithms. Our assumptions were that if we can
detect the endpoints of the paddle, we can recreate
it in software. So we added a bright red LED on
each end of the paddle, and chose to develop
algorithms to detect the endpoints’ positions, and
pass them off to the game.

Figure 4 Our Device

There are a few key advantages to this approach.
First, using a bright light makes the detection
largely lighting and noise independent, which is a
decided advantage over existing computer vision
implementations [4, 6, 7]. Second, the brightness of
each light and distance between the lights can be
used for detection not only in 2D but 3D should the
need arise.

One of the interesting issues we encountered was
how the camera perceives color. While the LED’s
may look like a very solid red to the human eye, it
can clearly be seen in this image that to the camera,
they are very white with a red outline. This effect
was unexpected and initially caused problems in
the detection algorithm. The camera’s exposure
time caused bleaching in the color buffer to occur
due to the intensity of the lights.

Framework Architecture
We needed a framework that allows us to rapidly
prototype our design, and implement some test
cases to see how it performed. C# was an easy
choice, given its ease of UI design, integrated
garbage collector, and built-in rendering controls.
Having GDI+ immediately available was very
handy to visualize our algorithms performance.

The next challenge in developing something that
we could immediately use was to figure out a way
to interface with the hardware. This took quite a
bit of research and trial and error testing to figure
out a convenient and fast way to capture raw
images from the camera. We eventually settled on
a wrapper around the avicap32.dll library [2]. It
allowed us to do streaming video and provided a
callback to get the data each frame (compared to
some libraries that only displayed the video without
giving you access to it). C# also allowed us to do
some easy Bitmap operations intrinsically. Such as
stretching the image, and saving and loading from
files. This enabled us to add a simple but useful
playback functionality to demo the project.

Point Detection Algorithm
Once an image has been captured by the camera, it
is sent to the image processor. The entire detection
process is done in a single pass over the image for

speed purposes (a 400x300 image is 120000 pixels
per frame, thus the need for optimization). A full-
scene pass is necessary as we cannot be guaranteed
the wand will not move quickly across the scene.
A single full pass also maintains a steady process
time.

The algorithm is split up into three main steps:
First, use temporal differences to eliminate known
background pixels [1]. Second, identify points of
interest that might be our LED’s. Last, decide
which two points are most likely to be the LED’s
by culling any points that seem unlikely.

We knew that to make this work in real time using
software on the CPU we had to put all our
processing of the raw data into one pass (or less),
because having to search through 120000 pixels
multiple times will begin to encroach upon the time
necessary for the rest of the application (game
logic, physics, etc). Our initial goal given the lack
of dedicated hardware or threading was ten frames
per second. So to reduce searching time we started
with the idea of using a simple window search to
categorize regions at a time.

The first step was to extract moving objects from
the background. Thus, a calibration image is shot
right when the program begins, to rule out anything
that will likely remain still in the image. This
stored image is compared within a threshold (to
account for subtle variations and noise in the
image) to new images taken during the course of
the application. Any pixels too closely related to
the calibration image are thrown out. This greatly
reduces the search space of the algorithm in the
next two steps.

While this technique is excellent in controlled
conditions, it does have drawbacks. Dramatically
changing lighting, background noise (like people
walking by), or having the wand in the frame to
begin with nullify any benefits gained.

Current

Window

 Location

Figure 5 Color Window Representation

In the second step, we detect possible points in the
image that might be our LED’s. Since we know we
are working with a very bright light we know we
can make some assumptions about what we are
going to be getting as input. The first is that we
know that the red LED light will have a gradient

falloff as we move away from the center of the
LED. Thus we made the search window (Figure 5)
look for the color with some offset to increase out
chances of finding them. We also added test
conditions to throw away any data outside the
specific color range we are looking for. That way
we are eliminating the white light and
predominantly green and blue colors. Given the
window, we take a sum of all pixels that pass the
tests, and if they are above a certain threshold (50-
70%) of the maximum possible, we accept the
region as a point detected.

Our original settings produced unreliable results,
with color values for the background changing
more than expected. We noticed that the camera
itself did its own image processing in the
background. The gain, exposure, and brightness
settings on the camera greatly affected the results
of the algorithm. Adjusting these values to the
proper settings solved this problem. Notice the
change in coloration in the next two images (Figure
6 and Figure 7).

Figure 6 Tinted Exposure Settings

Figure 7 Even Exposure Settings

The final part of the process decides which two
points created by the first step are most relevant.
No one metric sufficed, so we combined several
simple algorithms to cull the points. The next

image (Figure 8) shows what a raw image might
look like:

Figure 8 Unfiltered Image

Each green circle on the image is a potential point
that satisfies the color requirements by the first
step. The ends of the wand are detected.
Unfortunately, so are many other data points on the
hand and face. We needed an algorithm to
differentiate between relevant and irrelevant data.

The first step of the culling process eliminates
groups of points too close to each other (Figure 9).
We compare the distance of each point to.
Pseudocode follows:

For Each Point in PointList
 For Each OtherPoint in PointList
 If Difference < Threshold
 Remove OtherPoint
 EndIf
 EndFor
EndFor

Figure 9 Image with Clusters Removed

Now we have evenly spaced regions of interest
identified. We still have the LED’s captured, but
there is still some extra data in the list. While the
history is only one deep (only the last frame is
tracked), it is sufficient for removing this extra
data. Given the history of the last successful points
found, we can now rule out any points that are too
far away from the last found points. The

assumption in this step is that the player will not be
moving the wand very far per frame, thus any
points too far removed can be eliminated. Some
Pseudo code for this process is as follows:

For Each Point in History
 For Each Point
 If Diff < Threshold
 If Color is closer to Ideal
 Choose Point
 EndIf
 EndIf
 EndFor
EndFor

Figure 10 History Filtering Applied

Finally we see something we can work with
(Figure 10). We pass this data to the game logic,
and record the new history points.

Now, the images shown have been ideal, in that
there actually were two points on the screen to
detect. One of the major issues we came across is
that we aren’t guaranteed this condition. The wand
can be half or fully off of the screen as the user
plays. Despite this error, we need to maintain our
point history so that future detection continues to
work. To combat this, we have several cases for
each error condition to keep the points on the
screen. We handle these cases by guaranteeing two
evenly spaced points remain on the screen at all
times for detection to resume when both points are
detected again.

Lastly, we need initial points, a set that can be used
at startup before we have identified the wand on the
screen as the history to track the wand in the future.
Thus when the application starts a dummy set of
points are placed on the screen in a predefined
location. When the wand is moved in proximity
with them, it latches on and the true detection can
begin. After we find the points, we pass it to the
Game Logic and physics systems.

Physics Integration
After the image is processed the data is sent to a
fairly standard physics system to form some kind

of object. For game we produced, we created a line
object stretched between the two points that would
collide with other game objects. This could easily
be extended by using the two points given to be
control points for any number of objects (a wand, a
sword, a handle). Note that even in two dimensions
we already have some sense of depth from the size
of the line produced. While the example game
operates in two dimensions, the transition to 3D
would be relatively simple.

One optimization that needs to be considered for
collision is to make the object they are controlling
smoothly animate (rather than snapping when new
data is acquired). Using a history of point
locations, velocity and acceleration could be
derived, allowing for smooth animation in-game to
compensate for slow data from the webcam. This
prevents clipping of the objects it will collide with.

Test Case: Bricks
The prototype project we produced is a recreation
of the classic arcade game Bricks. The wand acts
as the paddle (in blue), reflecting the ball (in white)
in the direction that the user wants. Figure 11
shows an image of the game in action.

Figure 11 Game Overlay Displayed

Conclusions
Many of today’s homes have webcams, and for the
price of a pair of LED lights and a way to power
them, a simple, fun, and highly interactive game
can be produced without the need for specialized
hardware like the Wiimote or dependant circuitry.
It is a flexible interface providing a sufficient
amount of information in a very small overhead.

Using a simple but known object for detection
purposes allows for very fast and optimized
algorithms to be run, and the possibilities for the
number and types of game play are large. Uses
from controlling our simple line, to complex
movements in three dimensions and gesture
recognition are easily seen. Playing musical
instruments, sword fighting, aiming, steering, and

fighting are all things that could easily be done
with this process.

Further refinements to the algorithm can be made,
depending on the type of accuracy needed in the
application. Velocity and acceleration tracking to
interpolate movement between frames would be
useful. Keeping a deeper history of movement
would aid in this. Tracking the relative intensities
of each light in addition to the length between them
would be useful in determining distance and tilt
away from the camera if that information was
needed.

Acknowledgements
Dr. Rania Hussein, for her excellent tutelage of
image processing techniques, and for helping us
through the publishing process.

Our families, for supporting us through the tough
years at DigiPen.

References
[1] Umbaugh, Scott E. Computer Imaging: Digital
Image Analysis and Processing. CRC Press, 2000

[2] Low, Brian “DirectX.Capture Class Library”
http://www.codeproject.com/cs/media/directxcaptu
re.asp 20, Mar 2003

[3] “Web Cam Optical Flow on a Tablet”
http://www.brains-n-
brawn.com/default.aspx?vDir=cameraflow 15,
August 2005.

[4] Freeman, W.T., Anderson, D.B., Beardsley,
P.A., Dodge, C.N., Roth, M., Weissman, C.D.,
Yerazunis, W.S., Kage, H., Kyuma, K., Miyake,
Y.; Tanaka, K., "Computer Vision for Interactive
Computer Graphics", IEEE Computer Graphics
and Applications, Vol. 18, Issue 3, pp. 42-53, May-
June 1998 (IEEE Computer Graphics and
Applications)

[5] Marriott, Michael, “At the Heart of the Wii,
Micron-Size Machines”
http://www.nytimes.com/2006/12/21/technology/2
1howw.html?ex=1167714000&en=e451f00cd7b61
40d&ei=5070 The New York Times, December 21,
2006.

[6] Zivkovic, Zoran. “Optical-flow-driven Gadgets
for Gaming User Interface."
http://staff.science.uva.nl/~zivkovic/Publications/zi
vkovic2004ICEC.pdf

[7] Sony Computer Entertainment Inc.: Sony Eye
Toy, www.eyetoy.com, (2003)

http://www.codeproject.com/cs/media/directxcapture.asp
http://www.codeproject.com/cs/media/directxcapture.asp
http://www.brains-n-brawn.com/default.aspx?vDir=cameraflow
http://www.brains-n-brawn.com/default.aspx?vDir=cameraflow
http://www.computer.org/cga/cg1998/g3toc.htm
http://www.computer.org/cga/cg1998/g3toc.htm
http://www.nytimes.com/2006/12/21/technology/21howw.html?ex=1167714000&en=e451f00cd7b6140d&ei=5070
http://www.nytimes.com/2006/12/21/technology/21howw.html?ex=1167714000&en=e451f00cd7b6140d&ei=5070
http://www.nytimes.com/2006/12/21/technology/21howw.html?ex=1167714000&en=e451f00cd7b6140d&ei=5070
http://staff.science.uva.nl/%7Ezivkovic/Publications/zivkovic2004ICEC.pdf
http://staff.science.uva.nl/%7Ezivkovic/Publications/zivkovic2004ICEC.pdf

Bibliography
Chance Lyon is a senior at DigiPen Institute of
Technology graduating with a Bachelors of
Computer Science in in Real-Time Interactive
Simulation in April 2007. He is also working as a
Junior Programmer for Zombie Studios, Inc.

Noah Hopson-Walker is a senior at DigiPen
Institute of Technology graduating with a
Bachelors of Computer Science in Real-Time
Interactive Simulation in April 2007.

Adam Demers is a senior at DigiPen Institute of
Technology graduating with a Bachelors of
Computer Science in Real-Time Interactive
Simulation in April 2007. He is currently working
as a software engineer at Wizards of the Coast.

