

Fast Synchronization of Mirrored Game Servers:
Outcomes from a Testbed Evaluation

Stefano Ferretti, Marco Roccetti, Alessio la Penna

Department of Computer Science
University of Bologna

Mura Anteo Zamboni, 7
40127 Bologna - Italy

E-mail: {sferrett, roccetti, lapenna}@cs.unibo.it

KEYWORDS
MOGs, synchronization, consistency, responsiveness,
interactivity.

ABSTRACT

The deployment of online games over the Internet
encompasses the use of novel, smart strategies able to
guarantee, on one side, a high level of responsiveness in the
game system and, one the other side, the consistency of the
computed game state. The use of mirrored game servers has
been recognized as a scalable, fault tolerant architectural
solution for the support of Multiplayer Online Games
(MOGs). We developed a new optimistic synchronization
scheme devised for MOGs. The intelligence behind our
scheme is based on the idea of exploiting two new notions of
obsolescence and correlation among game events. These
notions allow one to speed up the synchronization among
replicated servers, while maintaining the consistency of the
game state. In this work, we report on an experimental
assessment based on a real implementation of a mirrored
game server architecture, deployed over the Internet, that
exploits our synchronization algorithm. Specific attention is
devoted to the experimental assessment. Results show the
viability and the efficacy of our approach.

INTRODUCTION

Providing support to Multiplayer Online Games (MOGs) is
one of the most striking issues in the field of distributed
multimedia systems. According to these games, several
aspects arise that must be tackled from different angles.
Employed software architectures must be scalable and
tolerant to faults. Algorithms utilized to deliver and manage
game data must be fast, reliable, fair and cheat-proof.
Protocols that enable game nodes to interact should be
general and effective.

Prompted by these hard requirements, researchers and
industries are working aimed at finding new solutions for
supporting MOGs over best effort, wide area networks.
Noteworthy advancements have been done in this direction
[Borella 2000, Cronin 2002, Ferretti et al 2006, Knutson
2004, Mauve 2004, Mueller et al. 2005, Palazzi et al 2006].
Yet, the problem is far from being solved.

From an architectural point of view, a new distributed
solution has been identified as a viable approach to support
MOGs. This architectural solution is a hybrid between

classic client/server approaches (which typically lack fault-
tolerance and scalability) and peer-to-peer approaches
(which represent promising solutions but may impose that
high numbers of messages are sent through the network
when multicast-based delivery strategies cannot be
employed). These hybrid approaches are commonly referred
as mirrored game servers architectures [Cronin 2002, Mauve
2004, Palazzi et al. 2006]. In essence, several Game State
Servers (GSSs) are distributed over the Internet and maintain
a replicated game state. Clients connect to one GSS and
communicate only with it. Moreover, GSSs synchronize
themselves to maintain a consistent game state.

Needless to say, in this context, the synchronization
algorithm employed among GSSs plays a fundamental role
for the overall performances of the game system. Indeed,
this algorithm must guarantee the consistency of the
replicated game state while enabling the distribution of
“fresh” game data in a very quick way. As a matter of facts,
interactivity (thought as the degree of responsiveness
provided by the system) is the main issue in online games,
especially in fast-paced games. However, the need for a
reliable and totally ordered delivery of game events in
synchronization algorithms could affect the level of provided
interactivity.

With this in view, we have recently proposed a
synchronization scheme which is based on the idea of
exploiting the semantics of game events in order to relax
(when possible) reliability and ordering requirements. This
approach is accomplished in order to provide an augmented
interactivity degree while maintaining game state
consistency [Ferretti & Roccetti 2005, Ferretti et al. 2006].
Specifically, the intelligence behind our algorithm consists
in exploiting two new notions of obsolescence and
correlation among game events. These notions provide GSSs
with the ability of classifying and characterizing messages
coming from players. As a result, GSSs are enabled to
discard superseded data and to process game events
according to different orders, at different hosts, when this
does not introduce inconsistencies in the distributed
computation. The synchronization scheme is optimistic, i.e.,
events are processed as soon as they are received and
inconsistencies in the distributed computation are corrected
by rolling back erroneous computations.

The considered scheme was verified through extensive
simulations. Results showed the viability of our approach
[Ferretti & Roccetti 2005, Ferretti et al. 2006]. Obviously,

simulation results are particularly meaningful, since they are
repeatable and simulation settings can be varied so as to
assess the scheme according to different scenarios.
Nevertheless, there are several assumptions, which are
typically made during simulations, that may be flawed in a
real context. For instance, the assumption that nodes’
physical clocks are perfectly synchronized is quite obvious
in a simulated scenario. In the real world, perfect physical
clocks synchronization is hardly met. Thus, a question arises
whether such an issue may affect the system performances in
some way. Other examples are concerned with the clock
drift rate of nodes and differences in the computational
capabilities. Summing up, a main aspect of interest in our
research was that of assessing our optimistic synchronization
scheme in a real functioning mirrored game server
architecture.

With this in view, we have implemented a real distributed
mirrored game server architecture composed of three GSSs
deployed in the Internet. Specifically, two hosts were placed
in Italy, while the third one was placed in California, U.S.
Each GSS was equipped with our optimistic synchronization
algorithm to maintain a vision of the game state which is
consistent with that maintained by other GSSs. In this paper,
we report on technical issues related to the real deployment
of the game system and show results obtained through this
real experimental assessment.

The main outcomes of our study can be summarized as
follows. First, the assessment demonstrated that our
approach could really improve the responsiveness degree
provided by the system, while guaranteeing a uniform view
of the game state evolution at different replicated servers.
Second, having synchronized physical clocks and regulating
the clock drift rate are two important aspects to face with in
MOGs. Indeed, we noticed highly drift rates among clock
nodes. To solve these issues, we exploited a periodic
physical clock synchronization approach so as to correct
effects due to the drift rate. Third and final, we found out
that the critical node, placed at higher distance from the
other two GSSs, characterizes the overall performances of
the game system, as claimed in [Brun et al. 2006]. This
result has an obvious explanation. Even if the
synchronization scheme is optimistic, late events received by
the critical node force other nodes to rollback their
computations very often.

The remainder of this paper is organized as follows. Next
Section reports on some background which is useful to
introduce our optimistic synchronization algorithm. Then, in
the third Section, we report on issues concerned with the
problem of developing and deploying a real mirrored game
server architecture over the Internet. We also present in
detail the experimental testbed we exploited to assess our
approach. Obtained results are then showed and discussed in
the fourth Section. Finally, some conclusions are provided in
the last Section.

BACKGROUND

In this Section, we report on main results obtained in the

literature which are useful for the presentation of our work.
In particular, first, we discuss the need for scalable and fault
tolerant distributed solutions for the support of MOGs.
Second, we put emphasis on the existing trade off between
the problem of guaranteeing a consistent game evolution at
all nodes in the game system and that of guaranteeing a
responsive evolution of the game. Third and final, we
present an optimistic synchronization algorithm that may
successfully trade between these two issues.

Mirrored Game Server Architectures

Several works have been accomplished with the aim of
finding the most suitable architectural solutions for the
support of MOGs [Cronin 2004, Ferretti 2005, Ferretti and
Roccetti 2005, Ferretti & al. 2006, Mauve 2004, Palazzi
2006, Wright 2004]. Among classic completely centralized
(i.e., client/server) and fully decentralized (i.e., peer-to-peer)
solutions, an interesting proposal has been recognized which
is based on the idea of utilizing several mirrored GSSs
which are geographically dispersed over the net. Each player
connects to its nearest GSS and communicates with it in a
classic client/server style. In turn, each GSS is
interconnected with all other GSSs resembling a P2P
architecture [Diot 1999, Knutsson 2004]. Each GSS
maintains a local view of the game state. Thus, with each
new action performed by each player, its corresponding GSS
collects the generated event, notifies it to other GSSs,
updates the game state locally and, finally, communicates
the newly computed game state to their connected players.

It has been demonstrated that the use of a mirrored game
server architecture results as a profitable solution for
supporting highly distributed and crowded MOGs. Indeed,
only subsets of users connect to the same GSS. This way,
network and computational overheads at the server-side are
reduced. Moreover, the system is particularly tolerant to
faults, since GSSs are not single point of failures in the
system. Finally, this scheme lets a huge number of players to
join the same game, since different users may be connected
to different GSSs while participating to the same game
session.

Consistency vs Interactivity: The Need for an Intelligent
Synchronization Scheme

The use of multiple GSSs, each of which manages a
replicated state of the game, forces GSSs to synchronize
themselves in order to maintain a local, consistent vision of
the game evolution. Several schemes exist for consistency
maintenance. The problem with most of these mechanisms is
that they may require the use of some sort of synchronization
barriers [Palazzi 2006]. While useful in several contexts of
distributed systems, most of the classic synchronization
schemes fail when employed on MOGs. Basically,
synchronization approaches aim at providing ways to totally
order game events generated during the game evolution.
Hence, a main issue is that of identifying a proper ordering
scheme for game events. Several solutions exist, ranging
from simple turn-based schemes to timestamp-based orders
[Ferretti 2005, Fujimoto 1999].

According to the timestamp order, events are ordered and
processed based on an order obtained by exploiting
timestamps inserted within messages. As a matter of facts, it
results that a game event ordering scheme, based on
timestamps associated to game events produced by players,
is a very suitable one to ensure that the game advances in
(scaled) real-time [Fujimoto 1999]. The use of a timestamp
order ensures that all GSSs process game events in the same
way, thus guaranteeing that GSSs pass through same game
state updates. Unfortunately, a major concern is that large
computational and communication overheads are to be paid
if traditional event synchronization schemes are adopted to
enforce a timestamp order on the game event processing
activity at each GSS [Cronin 2004, Diot 1999, Fujimoto
1999, Lee 2004, Li 2002, Mauve 2004].

In substance, a tradeoff relationship exists between full
consistency and interactivity maintenance. Efficient,
intelligent and fast synchronization schemes are needed so as
to let GSSs to effectively collect game events produced by
players, compute correct game states and notify players with
fresh gaming information in a responsive way. More
specifically, for each new game event, an interval of time
can be measured between its generation and its arrival at a
given node. We term this resulting value Game Time
Difference (GTD). To have interactivity, new, consistent
game updates should be delivered to all participants without
surpassing a significant Game Interactivity Threshold (GIT).
The main aim of a MOG synchronization algorithm should
be that of keeping GTDs of game events lower than GIT
[Ferretti 2005, Palazzi et al. 2006].

A Fast Optimistic Obsolescence-based Synchronization
Algorithm

With both the needs for interactivity and consistency in
view, we have recently proposed a new optimistic
synchronization algorithm which is based on the idea of
exploiting the semantics of game events produced during the
game [Ferretti & Roccetti 2005, Ferretti & al. 2006]. In
particular, the mentioned approach is based on the notions of
correlation and obsolescence among game events. GSSs are
supplied with a smart and fast method for classifying and
characterizing messages coming from players. In the
following, we provide an informal explanation of these two
notions.

Two game events are said to be correlated if different orders
of execution of these game events lead to different game
states. Examples of correlated game events are those that act
on same game elements in a game world. Instead,
independent movements of different virtual characters are
examples of non-correlated game events.

The notion of obsolescence is a very intuitive one. Simply
put, new game events may render old information as
obsolete. For instance, the position of a given virtual
character at a given time may become an obsolete
information when the character moves to another position. In
general, many situations exist according to which fresher
game events annul the importance of previous events.

Indeed, cases exist when processing a new game event (say
enew) without considering the first one (say eold) leads to the
same final state that would be reached if both events were
processed in the correct order (i.e., eold becomes obsolete).
As a matter of facts, while simple to understand,
obsolescence is not a naïve concept. In fact, cases exist when
obsolescence relation cannot be applied among two events
eold and enew. In particular, a given event eold cannot be
considered as made obsolete by enew, when other events ei
correlated to eold have been generated within the time
interval comprised between the generation of eold and enew.
These game events ei may alter the evolution of the plot thus
making unapplicable the notion of obsolescence. Deeper
details about obsolescence and correlation may be found in
[Ferretti 2005, Palazzi et al. 2006].

Based on these concepts of correlation and obsolescence, we
have devised and developed a novel Optimistic
Obsolescence based Synchronization (OOS) algorithm
[Ferretti & Roccetti 2005, Ferretti et al. 2006]. The idea
behind the approach is that ordering and reliability
requirements can be relaxed for, respectively, non-correlated
and obsolete game events. Indeed, obsolete game events can
be discarded during the notification and processing
activities, thus fastening the event delivery among GSSs.
Moreover, to provide players with a uniform evolution of the
game, it is enough that only correlated game events are
processed by all GSSs respecting their correct timestamp
order. Instead, no ordering guarantee is needed to process
non-correlated events, as their delivery in different orders at
different GSSs do not alter the game state. Such correlation-
based order has the main advantage of reducing the
synchronization overheads.

Based on obsolescence and correlation, OOS is an optimistic
approach which is based on the well-known Time Warp
algorithm [Jefferson 1985]. Specifically, according to OOS,
aften reception of a new game event e, each GSS verifies if e
may be identified as obsolete. In this case, e is dropped.
Otherwise, a check is carried out to control whether any
other game events ei, correlated to e and generated after e,
have been already processed at that GSS. If this check
succeeds, then a rollback procedure is performed where all
these events ei are rolled back. At this point, e is processed,
followed by the execution of all those rolled back events
which are not obsolete. In fact, obsolete events are discarded
during the rollback. Only when e is not obsolete and no
events correlated to e have been processed out of order, e is
directly processed. The interested reader may refer to
[Ferretti and Roccetti 2005, Ferretti & al. 2006] for a
complete discussion of the OOS scheme.

DEVELOPING A REAL DISTRIBUTED MIRRORED
GAME SERVER ARCHITECTURE

What Happens in a Real, Wide Area Net?

The synchronization algorithm OOS described in the
previous Section was widely assessed through the use of
simulations [Ferretti and Roccetti 2005, Ferretti & al. 2006].
Of course, simulations have the great benefit of outputting

consistent and verifiable data. However, while obtained
results were particularly meaningful and sufficiently
adequate to confirm the goodness of our approach, a main
open issue was that of assessing our synchronization
algorithm in a real, fully operational mirrored game server
architecture.

Indeed, with the aim of focusing on technicalities of the
specific problem being considered, often in simulations
researchers make proper assumptions on their simulated
system. As a matter of facts, in the real world often these
assumptions fail or become very difficult to address.
Specifically, in our considered scenario, assumptions which
are definitively not valid are the following ones: having i) a
perfect synchronization among nodes’ physical clocks, ii)
the same, or a negligible, clock drift rate, iii) similar
computational capabilities of nodes, iv) the same workload
for each node in the system.

With this in view, we have developed, deployed on the
Internet and extensively tested a real functioning mirrored
game server architecture.

Some Implementation Details

Our implementation of OOS in real GSSs is based on a
receiver initiated event delivery scheme, built over UDP.
Basically, according to this approach negative
acknowledgements (NACKs) are exploited to provide
reliability in the event notification among GSSs, only if the
considered game events are not become obsolete [Ferretti
2005]. This way, reliability constraints are relaxed for those
game events that result obsolete. This approach has the
prominent advantage of reducing messages sent throughout
the network and fasten the event delivery activity.

As already mentioned, our synchronization algorithm
exploits an order based on timestamps associated to game
events to guarantee game state consistency. Therefore,
during the development of a real mirrored game server
architecture, synchronization of physical clocks of nodes
becomes an important issue to address. Not only, also the
clock drift rate must be kept as a negligible value to have
that the pace of the game advancements are similar to all
nodes in the system.

In order to regulate physical clock synchronization and
annul dangerous effects due to possibly high clock drift
rates, we have implemented a low level synchronization
scheme, based on that proposed by Cristian [Cristian 1989],
that continuously runs during the experimentations (i.e., the
game evolution), able to dynamically correct clocks’ skew of
GSSs.

Experimental Testbed

To evaluate our scheme, we have deployed over the Internet
a real mirrored game server architecture comprising three
different GSSs. As shown in Figure 1, a first GSS was
placed at the Department of Computer Science, University
of California Los Angeles. Other two GSSs were placed,

respectively, at the Department of Computer Science of the
University of Bologna, Italy, and at the detached study
course of Computer Science in Cesena, which is a structure
of the Multi-Campus Project of the University of Bologna.
Average latencies among nodes constituting this mirrored
developed architecture are shown in Figure 1.

It is important to notice that even if in our testbed two GSSs
were placed at a really short network distance, it is the
critical node (i.e., the one with higher latency with respect to
other ones) that mainly affects the performances of the
system [Brun 2006]. Indeed, even with a fast
synchronization scheme, game events generated by the
critical node will slow down the computation of new
consistent and correct game states.

As already mentioned, due to our goal of assessing our
synchronization algorithm in a real mirrored game
architecture, fully operational GSSs were installed on the
network. However, clients connected to GSSs were
emulated. This enabled us to monitor GSSs’ behavior under
very different gaming conditions. The event generation rate
at each emulated client was set to follow a lognormal
distribution, as inspired by literature on games, and to vary
from a normal traffic situation to an intensively loaded one
[Borella 2000, Farber 2002]. In particular, different
experiments have been conducted with an Average
Departure Time (ADT, i.e., the average time interval that
passes between the generation of two subsequent events) at
each emulated client varying from 30 msec (intense game
traffic) to 45 msec (moderate game traffic), while having the
standard deviation constantly equal to 10 msec. We
emulated 10 different clients connected to each GSS.
Finally, the average game event size was set equal to 200
Bytes.

Figure 1: System Model

To assess the efficacy of our approach in intense gaming
scenarios, we set the GIT value equal to 200 msec. This
setting for the interactivity threshold corresponds to a
configuration related to responsiveness requirements of fast-
paced games.

The probability that a given event is non-correlated to other
events was set to vary from 50% to 90%. It is worth noticing
that this metric can be equivalently thought as a metric that
regulates the probability that an event makes obsolete

preceding ones. Indeed, a higher non-correlation probability
entails a higher probability that a new event renders obsolete
previous ones generated by the same players, since a lower
amount of game events will interfere with this relation
among the two events. Another consideration worth of
mention is that a high probability of having obsolete events
represents a realistic scenario for a vast plethora of possible
games (i.e., adventure, strategic, car race, flight simulator,
etc.). For instance, it can be argued that most of the events
generated in games are just independent moves. In other
words, critical (correlated) game events that cannot become
obsolete have to be considered only sporadically, such as
during collisions or shots, and typically represent even less
than the 10% of the whole set of game events. An extensive
discussion of this claim has been reported in [Palazzi et al.
2006].

EXPERIMENTAL RESULTS

Measures of Interest

In this study we were interested in evaluating the following
measurements:

• The average number of game events with a GTD higher

than GIT. Obviously, the lower this average value, the
higher the level of interactivity and responsiveness
provided by the system.

• The amount of activated rollback procedures. Also in
this case, the lower this value the lower the
computational overhead added in the synchronization
process and the higher the responsiveness degree.

• The amount of obsolete events which are dropped by
our scheme.

To measure the benefits introduced by the use of the notions
of obsolescence and correlation, we contrasted our OOS
scheme with an implementation of the well known Time
Warp [Jefferson 1985].

0

5

10

15

20

25

30

35

40

45

50 60 70 80 90

Probability of Non-Correlation

%
 G

TD
 o

ve
r G

IT

OOS TimeWarp

Figure 2: Average Percentage of Events with GTD over
GIT, ADT = 30 msec

Outcomes

Figure 2 and 3 report the average amount of events that
experienced a GTD value that is higher than GIT. The two
charts correspond to different ADT values, i.e., different
paces of generation of game events at clients. As can be
noticed, our OOS scheme performs better than Time Warp,
thus ensuring a higher interactivity degree. Specifically, with
our scheme, when the ADT is set equal to 45% and the
probability of non-correlation is above 70%, only a
negligible number of game events experience a GTD which
is above the interactivity threshold.

0

10

20

30

40

50

60

50 60 70 80 90

Probability of Non-Correlation

%
 G

TD
 o

ve
r G

IT

OOS TimeWarp

Figure 3: Average Percentage of Events with GTD over
GIT, ADT = 45 msec

Figures 4 and 5, instead, report the average rollback ratio
experienced by the two considered optimistic
synchronization algorithms during our tests. In substance,
each chart reports an averaged number obtained by dividing
the total number of performed rollbacks over the total
number of generated events. As expected, since obsolete
events are dropped during the event notification activity, the
need for rollbacks diminishes when resorting to our OOS
scheme.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

50 60 70 80 90

Probability of Non-Correlation

R
ol

lb
ac

k
R

at
io

OOS TimeWarp

Figure 4: Rollback Ratio, ADT = 30 msec

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

50 60 70 80 90

Probability of Non-Correlation

R
ol

lb
ac

k
R

at
io

OOS TimeWarp

Figure 5: Rollback Ratio, ADT = 45 msec

0

2

4

6

8

10

12

14

16

18

20

50 60 70 80 90

Probability of Non-Correlation

%
 D

ro
pp

ed
 E

ve
nt

s

Meucci Tigrana Mykonos

Figure 6: Percentage of Dropped Events, ADT = 30 msec,
Meucci refers to the host in Cesena, Tigrana refers to the

host in Bologna, Mykonos refers to the host in Los Angeles

0

0,2

0,4

0,6

0,8

1

1,2

1,4

50 60 70 80 90

Probability of Non-Correlation

%
 D

ro
pp

ed
 E

ve
nt

s

Meucci Tigrana Mykonos

Figure 7: Percentage of Dropped Events, ADT = 45 msec,
Meucci refers to the host in Cesena, Tigrana refers to the

host in Bologna, Mykonos refers to the host in Los Angeles

It can be noticed that when the probability of obsolescence
grows up to 90%, the rollback ratio does not decrease
linearly. Probably, this effect is due to the fact that events

locally generated at a given GSS are always timestamped,
notified to other GSSs, and then optimistically processed at
that GSS as soon as they are received from the client. In
other words, events generated by players connected to that
GSS are, on average, processed before those (with similar
timestamps) generated by clients connected to other GSSs.
Hence, a given ratio of rollbacks is inevitable when resorting
to optimistic synchronization schemes. Nevertheless, our
scheme improves this considered performance metric.

Figures 6 and 7 show the average percentage of obsolete
events, dropped at each GSS during our tests, depending on
the considered ADT. As a first obvious consideration, it
results that the U.S. node (i.e., Mykonos, see also Figure 1)
drops a higher amount of game events, since there are higher
network latencies to reach that node with respect to the other
ones placed in Italy (i.e., Meucci and Tigrana, see also
Figure 1). It is worth noticing that in both charts, the number
of dropped events initially grows with the percentage of non
correlation. This can be explained with the fact that, the
more the number of available events that become obsolete
(i.e., non correlated to other ones generated by other
players), the more each GSS is able to drop obsolete events
for an augmented interactivity. Surprisingly, once surpassed
a given percentage of non correlation probability, the
number of dropped events decreases considerably. This is
probably due to the fact that, with a high non correlation
(i.e., higher obsolescence) probability, our scheme is able to
provide a high level of interactivity; thus, game events are
typically processed before they can become obsolete.

Obviously, performances improve with a higher ADT, since
a slower pace of generation of game events imply a smaller
number of game events to be transmitted, managed and
processed per unit of time.

As a final consideration, these results confirm those obtained
thought the use of simulations. Thus, we are able to
conclude that our scheme can be of real service to guarantee
interactive gaming experiences in massively distributed
MOGs while maintaining the coherence of the view of the
game evolution at different, mirrored game servers.

CONCLUSIONS

In this paper, we have reported on a real experimental
campaign we have built so as to assess our OOS algorithm.

As a main outcome of our evaluation, we found out that
OOS is of real service when MOGs are deployed over
scalable mirrored game server architectures. Indeed, OOS
could really improve the responsiveness degree provided by
the system, while maintaining game state consistency.

We also observed that physical clocks’ nodes may really
drift apart during the game evolution. To face this issue, a
periodic physical clock synchronization approach should be
utilized to maintain short clock skews among nodes.

ACKNOWLEDGMENTS

We wish to thank the Department of Computer Science of
UCLA for their technical support during the experimental
assessment. This work is financially supported by the Italian
M.I.U.R. under the MOMA and DAMASCO initiatives.

REFERENCES

M.S. Borella. 2000. “Source Models for Network Game Traffic”,
Computer Communications, vol. 23, no. 4, 2000, pp.403-410.

J. Brun, F. Safei, P. Boustead. 2006. “Server Topology
Considerations in Online Games”, in Proceedings of
Netgames’06, Singapore, October 2006.

F. Cristian. 1989. “Probabilistic Clock Synchronization”,
Distributed Computing, Vol. 3, No. 3, 1989, 146-158.

E. Cronin, A. R. Kurc, B. Filstrup, S. Jamin. 2004. “An Efficient
Synchronization Mechanism for Mirrored Game
Architectures”, Multimedia Tools and Applications, vol.23,
no.1, 2004, pp.7-30.

J. Farber. 2002. “Network Game Traffic Modelling”, in
Proceedings of NetGames2002, Braunschweig, Germany,
2002, pp.53-57.

S. Ferretti & M. Roccetti. 2005. “Fast Delivery of Game Events
with an Optimistic Synchronization Mechanism in Massive
Multiplayer Online Games”, in Proceedings of ACM SIGCHI
International Conference on Advances in Computer
Entertainment Technology (ACE 2005), Valencia (Spain),
ACM, June 2005, 405-412.

S. Ferretti, M. Roccetti & C.E. Palazzi. 2006. “An Optimistic
Obsolescence-Based Approach To Event Synchronization For
Massive Multiplayer Online Games”, International Journal of
Computers and Applications, ACTA Press, February 2006, to
appear.

R. Fujimoto. 1999. “Parallel and Distribution Simulation Systems”,
John Wiley Inc.

D.R. Jefferson, “Virtual Time”, ACM Transaction on Programming
Languages and Systems, vol. 7, no. 3, 1985, pp. 404-425.

B. Knutsson, L. Honghui, X. Wei, B. Hopkins. 2004. “Peer-to-peer
support for massively multiplayer games”, in Proceedings of
the Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2004),
March 2004, 96-107.

K. Lee, B. Ko, S. Calo. 2004. “Adaptive server selection for large
scale interactive online games”, in Proceedings of the 14th
international Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2004), ACM
Press, 2004, pp. 152–157.

F. Li, L. Li, and R. Lau. 2004. “Supporting continuous consistency
in multiplayer online games”, in Proceedings of the 12th
annual ACM international conference on Multimedia
(MULTIMEDIA ’04), ACM Press, 2004, pp. 388–391.

M. Mauve, J. Vogel, V. Hilt, W. Effelsberg, “Local-lag and
Timewarp: Providing Consistency for Replicated Continuous
Applications”, IEEE Transactions on Multimedia, vol.6, no.1,
2004, pp. 47-57.

J. Muller, S. Gorlatch. 2005. “Rokkatan: scaling an RTS game
design to the massively multiplayer realm”, ACM Computers in
Entertainment, ACM Press, Vol. 4, Is. 3, July 2006.

C.E. Palazzi, S. Ferretti, S. Cacciaguerra & M. Roccetti. 2006.
Interactivity-Loss Avoidance in Event Delivery
Synchronization for Mirrored Game Architectures,
in IEEE Transactions on Multimedia, IEEE Signal Processing
Society, Vol. 8, No. 4, August 2006, 874-879.

S. Wright, S. Tischer, “Architectural Considerations in Online
Game Services over DSL Networks”, in Proceedings of IEEE
International Conference on Communications - (ICC'04), IEEE
Communications Society, Paris, France, 2004, pp.1380-1385.

