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ABSTRACT 
 
The deployment of online games over the Internet 
encompasses the use of novel, smart strategies able to 
guarantee, on one side, a high level of responsiveness in the 
game system and, one the other side, the consistency of the 
computed game state. The use of mirrored game servers has 
been recognized as a scalable, fault tolerant architectural 
solution for the support of Multiplayer Online Games 
(MOGs). We developed a new optimistic synchronization 
scheme devised for MOGs. The intelligence behind our 
scheme is based on the idea of exploiting two new notions of 
obsolescence and correlation among game events. These 
notions allow one to speed up the synchronization among 
replicated servers, while maintaining the consistency of the 
game state. In this work, we report on an experimental 
assessment based on a real implementation of a mirrored 
game server architecture, deployed over the Internet, that 
exploits our synchronization algorithm. Specific attention is 
devoted to the experimental assessment. Results show the 
viability and the efficacy of our approach. 
 
INTRODUCTION 
 
Providing support to Multiplayer Online Games (MOGs) is 
one of the most striking issues in the field of distributed 
multimedia systems. According to these games, several 
aspects arise that must be tackled from different angles. 
Employed software architectures must be scalable and 
tolerant to faults. Algorithms utilized to deliver and manage 
game data must be fast, reliable, fair and cheat-proof. 
Protocols that enable game nodes to interact should be 
general and effective. 
 
Prompted by these hard requirements, researchers and 
industries are working aimed at finding new solutions for 
supporting MOGs over best effort, wide area networks. 
Noteworthy advancements have been done in this direction 
[Borella 2000, Cronin 2002, Ferretti et al 2006, Knutson 
2004, Mauve 2004, Mueller et al. 2005, Palazzi et al 2006]. 
Yet, the problem is far from being solved. 
 
From an architectural point of view, a new distributed 
solution has been identified as a viable approach to support 
MOGs. This architectural solution is a hybrid between 

classic client/server approaches (which typically lack fault-
tolerance and scalability) and peer-to-peer approaches 
(which represent promising solutions but may impose that 
high numbers of messages are sent through the network 
when multicast-based delivery strategies cannot be 
employed). These hybrid approaches are commonly referred 
as mirrored game servers architectures [Cronin 2002, Mauve 
2004, Palazzi et al. 2006]. In essence, several Game State 
Servers (GSSs) are distributed over the Internet and maintain 
a replicated game state. Clients connect to one GSS and 
communicate only with it. Moreover, GSSs synchronize 
themselves to maintain a consistent game state.  
 
Needless to say, in this context, the synchronization 
algorithm employed among GSSs plays a fundamental role 
for the overall performances of the game system. Indeed, 
this algorithm must guarantee the consistency of the 
replicated game state while enabling the distribution of 
“fresh” game data in a very quick way. As a matter of facts, 
interactivity (thought as the degree of responsiveness 
provided by the system) is the main issue in online games, 
especially in fast-paced games. However, the need for a 
reliable and totally ordered delivery of game events in 
synchronization algorithms could affect the level of provided 
interactivity. 
 
With this in view, we have recently proposed a 
synchronization scheme which is based on the idea of 
exploiting the semantics of game events in order to relax 
(when possible) reliability and ordering requirements. This 
approach is accomplished in order to provide an augmented 
interactivity degree while maintaining game state 
consistency [Ferretti & Roccetti 2005, Ferretti et al. 2006]. 
Specifically, the intelligence behind our algorithm consists 
in exploiting two new notions of obsolescence and 
correlation among game events. These notions provide GSSs 
with the ability of classifying and characterizing messages 
coming from players. As a result, GSSs are enabled to 
discard superseded data and to process game events 
according to different orders, at different hosts, when this 
does not introduce inconsistencies in the distributed 
computation. The synchronization scheme is optimistic, i.e., 
events are processed as soon as they are received and 
inconsistencies in the distributed computation are corrected 
by rolling back erroneous computations. 
 
The considered scheme was verified through extensive 
simulations. Results showed the viability of our approach 
[Ferretti & Roccetti 2005, Ferretti et al. 2006]. Obviously, 



 

 

simulation results are particularly meaningful, since they are 
repeatable and simulation settings can be varied so as to 
assess the scheme according to different scenarios. 
Nevertheless, there are several assumptions, which are 
typically made during simulations, that may be flawed in a 
real context. For instance, the assumption that nodes’ 
physical clocks are perfectly synchronized is quite obvious 
in a simulated scenario. In the real world, perfect physical 
clocks synchronization is hardly met. Thus, a question arises 
whether such an issue may affect the system performances in 
some way. Other examples are concerned with the clock 
drift rate of nodes and differences in the computational 
capabilities. Summing up, a main aspect of interest in our 
research was that of assessing our optimistic synchronization 
scheme in a real functioning mirrored game server 
architecture. 
 
With this in view, we have implemented a real distributed 
mirrored game server architecture composed of three GSSs 
deployed in the Internet. Specifically, two hosts were placed 
in Italy, while the third one was placed in California, U.S. 
Each GSS was equipped with our optimistic synchronization 
algorithm to maintain a vision of the game state which is 
consistent with that maintained by other GSSs. In this paper, 
we report on technical issues related to the real deployment 
of the game system and show results obtained through this 
real experimental assessment.  
 
The main outcomes of our study can be summarized as 
follows. First, the assessment demonstrated that our 
approach could really improve the responsiveness degree 
provided by the system, while guaranteeing a uniform view 
of the game state evolution at different replicated servers. 
Second, having synchronized physical clocks and regulating 
the clock drift rate are two important aspects to face with in 
MOGs. Indeed, we noticed highly drift rates among clock 
nodes. To solve these issues, we exploited a periodic 
physical clock synchronization approach so as to correct 
effects due to the drift rate. Third and final, we found out 
that the critical node, placed at higher distance from the 
other two GSSs, characterizes the overall performances of 
the game system, as claimed in [Brun et al. 2006]. This 
result has an obvious explanation. Even if the 
synchronization scheme is optimistic, late events received by 
the critical node force other nodes to rollback their 
computations very often.  
 
The remainder of this paper is organized as follows. Next 
Section reports on some background which is useful to 
introduce our optimistic synchronization algorithm. Then, in 
the third Section, we report on issues concerned with the 
problem of developing and deploying a real mirrored game 
server architecture over the Internet. We also present in 
detail the experimental testbed we exploited to assess our 
approach. Obtained results are then showed and discussed in 
the fourth Section. Finally, some conclusions are provided in 
the last Section. 
 
BACKGROUND 
 
In this Section, we report on main results obtained in the 

literature which are useful for the presentation of our work. 
In particular, first, we discuss the need for scalable and fault 
tolerant distributed solutions for the support of MOGs. 
Second, we put emphasis on the existing trade off between 
the problem of guaranteeing a consistent game evolution at 
all nodes in the game system and that of guaranteeing a 
responsive evolution of the game. Third and final, we 
present an optimistic synchronization algorithm that may 
successfully trade between these two issues. 
 
Mirrored Game Server Architectures 
 
Several works have been accomplished with the aim of 
finding the most suitable architectural solutions for the 
support of MOGs [Cronin 2004, Ferretti 2005, Ferretti and 
Roccetti 2005, Ferretti & al. 2006, Mauve 2004, Palazzi 
2006, Wright 2004]. Among classic completely centralized 
(i.e., client/server) and fully decentralized (i.e., peer-to-peer) 
solutions, an interesting proposal has been recognized which 
is based on the idea of utilizing several mirrored GSSs 
which are geographically dispersed over the net. Each player 
connects to its nearest GSS and communicates with it in a 
classic client/server style. In turn, each GSS is 
interconnected with all other GSSs resembling a P2P 
architecture [Diot 1999, Knutsson 2004]. Each GSS 
maintains a local view of the game state. Thus, with each 
new action performed by each player, its corresponding GSS 
collects the generated event, notifies it to other GSSs, 
updates the game state locally and, finally, communicates 
the newly computed game state to their connected players. 
 
It has been demonstrated that the use of a mirrored game 
server architecture results as a profitable solution for 
supporting highly distributed and crowded MOGs. Indeed, 
only subsets of users connect to the same GSS. This way, 
network and computational overheads at the server-side are 
reduced. Moreover, the system is particularly tolerant to 
faults, since GSSs are not single point of failures in the 
system. Finally, this scheme lets a huge number of players to 
join the same game, since different users may be connected 
to different GSSs while participating to the same game 
session.   
 
Consistency vs Interactivity: The Need for an Intelligent 
Synchronization Scheme  
 
The use of multiple GSSs, each of which manages a 
replicated state of the game, forces GSSs to synchronize 
themselves in order to maintain a local, consistent vision of 
the game evolution. Several schemes exist for consistency 
maintenance. The problem with most of these mechanisms is 
that they may require the use of some sort of synchronization 
barriers [Palazzi 2006]. While useful in several contexts of 
distributed systems, most of the classic synchronization 
schemes fail when employed on MOGs. Basically, 
synchronization approaches aim at providing ways to totally 
order game events generated during the game evolution. 
Hence, a main issue is that of identifying a proper ordering 
scheme for game events. Several solutions exist, ranging 
from simple turn-based schemes to timestamp-based orders 
[Ferretti 2005, Fujimoto 1999].  



 

 

According to the timestamp order, events are ordered and 
processed based on an order obtained by exploiting 
timestamps inserted within messages. As a matter of facts, it 
results that a game event ordering scheme, based on 
timestamps associated to game events produced by players, 
is a very suitable one to ensure that the game advances in 
(scaled) real-time [Fujimoto 1999]. The use of a timestamp 
order ensures that all GSSs process game events in the same 
way, thus guaranteeing that GSSs pass through same game 
state updates. Unfortunately, a major concern is that large 
computational and communication overheads are to be paid 
if traditional event synchronization schemes are adopted to 
enforce a timestamp order on the game event processing 
activity at each GSS [Cronin 2004, Diot 1999, Fujimoto 
1999, Lee 2004, Li 2002, Mauve 2004].  
 
In substance, a tradeoff relationship exists between full 
consistency and interactivity maintenance. Efficient, 
intelligent and fast synchronization schemes are needed so as 
to let GSSs to effectively collect game events produced by 
players, compute correct game states and notify players with 
fresh gaming information in a responsive way. More 
specifically, for each new game event, an interval of time 
can be measured between its generation and its arrival at a 
given node. We term this resulting value Game Time 
Difference (GTD). To have interactivity, new, consistent 
game updates should be delivered to all participants without 
surpassing a significant Game Interactivity Threshold (GIT). 
The main aim of a MOG synchronization algorithm should 
be that of keeping GTDs of game events lower than GIT 
[Ferretti 2005, Palazzi et al. 2006]. 
 
A Fast Optimistic Obsolescence-based Synchronization 
Algorithm 
 
With both the needs for interactivity and consistency in 
view, we have recently proposed a new optimistic 
synchronization algorithm which is based on the idea of 
exploiting the semantics of game events produced during the 
game [Ferretti & Roccetti 2005, Ferretti & al. 2006]. In 
particular, the mentioned approach is based on the notions of 
correlation and obsolescence among game events. GSSs are 
supplied with a smart and fast method for classifying and 
characterizing messages coming from players. In the 
following, we provide an informal explanation of these two 
notions. 
 
Two game events are said to be correlated if different orders 
of execution of these game events lead to different game 
states. Examples of correlated game events are those that act 
on same game elements in a game world. Instead, 
independent movements of different virtual characters are 
examples of non-correlated game events. 
 
The notion of obsolescence is a very intuitive one. Simply 
put, new game events may render old information as 
obsolete. For instance, the position of a given virtual 
character at a given time may become an obsolete 
information when the character moves to another position. In 
general, many situations exist according to which fresher 
game events annul the importance of previous events. 

Indeed, cases exist when processing a new game event (say 
enew) without considering the first one (say eold) leads to the 
same final state that would be reached if both events were 
processed in the correct order (i.e., eold becomes obsolete). 
As a matter of facts, while simple to understand, 
obsolescence is not a naïve concept. In fact, cases exist when 
obsolescence relation cannot be applied among two events 
eold and enew. In particular, a given event eold cannot be 
considered as made obsolete by enew, when other events ei 
correlated to eold have been generated within the time 
interval comprised between the generation of eold and enew. 
These game events ei may alter the evolution of the plot thus 
making unapplicable the notion of obsolescence. Deeper 
details about obsolescence and correlation may be found in 
[Ferretti 2005, Palazzi et al. 2006]. 
 
Based on these concepts of correlation and obsolescence, we 
have devised and developed a novel Optimistic 
Obsolescence based Synchronization (OOS) algorithm 
[Ferretti & Roccetti 2005, Ferretti et al. 2006]. The idea 
behind the approach is that ordering and reliability 
requirements can be relaxed for, respectively, non-correlated 
and obsolete game events. Indeed, obsolete game events can 
be discarded during the notification and processing 
activities, thus fastening the event delivery among GSSs. 
Moreover, to provide players with a uniform evolution of the 
game, it is enough that only correlated game events are 
processed by all GSSs respecting their correct timestamp 
order. Instead, no ordering guarantee is needed to process 
non-correlated events, as their delivery in different orders at 
different GSSs do not alter the game state. Such correlation-
based order has the main advantage of reducing the 
synchronization overheads. 
 
Based on obsolescence and correlation, OOS is an optimistic 
approach which is based on the well-known Time Warp 
algorithm [Jefferson 1985]. Specifically, according to OOS, 
aften reception of a new game event e, each GSS verifies if e 
may be identified as obsolete. In this case, e is dropped. 
Otherwise, a check is carried out to control whether any 
other game events ei, correlated to e and generated after e, 
have been already processed at that GSS. If this check 
succeeds, then a rollback procedure is performed where all 
these events ei are rolled back. At this point, e is processed, 
followed by the execution of all those rolled back events 
which are not obsolete. In fact, obsolete events are discarded 
during the rollback. Only when e is not obsolete and no 
events correlated to e have been processed out of order, e is 
directly processed. The interested reader may refer to 
[Ferretti and Roccetti 2005, Ferretti & al. 2006] for a 
complete discussion of the OOS scheme. 
 
DEVELOPING A REAL DISTRIBUTED MIRRORED 
GAME SERVER ARCHITECTURE 
 
What Happens in a Real, Wide Area Net? 
 
The synchronization algorithm OOS described in the 
previous Section was widely assessed through the use of 
simulations [Ferretti and Roccetti 2005, Ferretti & al. 2006]. 
Of course, simulations have the great benefit of outputting 



 

 

consistent and verifiable data. However, while obtained 
results were particularly meaningful and sufficiently 
adequate to confirm the goodness of our approach, a main 
open issue was that of assessing our synchronization 
algorithm in a real, fully operational mirrored game server 
architecture. 
 
Indeed, with the aim of focusing on technicalities of the 
specific problem being considered, often in simulations 
researchers make proper assumptions on their simulated 
system. As a matter of facts, in the real world often these 
assumptions fail or become very difficult to address. 
Specifically, in our considered scenario, assumptions which 
are definitively not valid are the following ones: having i) a 
perfect synchronization among nodes’ physical clocks, ii) 
the same, or a negligible, clock drift rate, iii) similar 
computational capabilities of nodes, iv) the same workload 
for each node in the system. 
 
With this in view, we have developed, deployed on the 
Internet and extensively tested a real functioning mirrored 
game server architecture.  
 
Some Implementation Details 
 
Our implementation of OOS in real GSSs is based on a 
receiver initiated event delivery scheme, built over UDP. 
Basically, according to this approach negative 
acknowledgements (NACKs) are exploited to provide 
reliability in the event notification among GSSs, only if the 
considered game events are not become obsolete [Ferretti 
2005]. This way, reliability constraints are relaxed for those 
game events that result obsolete. This approach has the 
prominent advantage of reducing messages sent throughout 
the network and fasten the event delivery activity. 
 
As already mentioned, our synchronization algorithm 
exploits an order based on timestamps associated to game 
events to guarantee game state consistency. Therefore, 
during the development of a real mirrored game server 
architecture, synchronization of physical clocks of nodes 
becomes an important issue to address. Not only, also the 
clock drift rate must be kept as a negligible value to have 
that the pace of the game advancements are similar to all 
nodes in the system. 
 
In order to regulate physical clock synchronization and 
annul dangerous effects due to possibly high clock drift 
rates, we have implemented a low level synchronization 
scheme, based on that proposed by Cristian [Cristian 1989], 
that continuously runs during the experimentations (i.e., the 
game evolution), able to dynamically correct clocks’ skew of 
GSSs.  
 
Experimental Testbed 
 
To evaluate our scheme, we have deployed over the Internet 
a real mirrored game server architecture comprising three 
different GSSs. As shown in Figure 1, a first GSS was 
placed at the Department of Computer Science, University 
of California Los Angeles. Other two GSSs were placed, 

respectively, at the Department of Computer Science of the 
University of Bologna, Italy, and at the detached study 
course of Computer Science in Cesena, which is a structure 
of the Multi-Campus Project of the University of Bologna. 
Average latencies among nodes constituting this mirrored 
developed architecture are shown in Figure 1. 
 
It is important to notice that even if in our testbed two GSSs 
were placed at a really short network distance, it is the 
critical node (i.e., the one with higher latency with respect to 
other ones) that mainly affects the performances of the 
system [Brun 2006]. Indeed, even with a fast 
synchronization scheme, game events generated by the 
critical node will slow down the computation of new 
consistent and correct game states. 
 
As already mentioned, due to our goal of assessing our 
synchronization algorithm in a real mirrored game 
architecture, fully operational GSSs were installed on the 
network. However, clients connected to GSSs were 
emulated. This enabled us to monitor GSSs’ behavior under 
very different gaming conditions. The event generation rate 
at each emulated client was set to follow a lognormal 
distribution, as inspired by literature on games, and to vary 
from a normal traffic situation to an intensively loaded one 
[Borella 2000, Farber 2002]. In particular, different 
experiments have been conducted with an Average 
Departure Time (ADT, i.e., the average time interval that 
passes between the generation of two subsequent events) at 
each emulated client varying from 30 msec (intense game 
traffic) to 45 msec (moderate game traffic), while having the 
standard deviation constantly equal to 10 msec. We 
emulated 10 different clients connected to each GSS. 
Finally, the average game event size was set equal to 200 
Bytes. 
 

 
 

Figure 1: System Model 
 
To assess the efficacy of our approach in intense gaming 
scenarios, we set the GIT value equal to 200 msec. This 
setting for the interactivity threshold corresponds to a 
configuration related to responsiveness requirements of fast-
paced games. 
 
The probability that a given event is non-correlated to other 
events was set to vary from 50% to 90%. It is worth noticing 
that this metric can be equivalently thought as a metric that 
regulates the probability that an event makes obsolete 



 

 

preceding ones. Indeed, a higher non-correlation probability 
entails a higher probability that a new event renders obsolete 
previous ones generated by the same players, since a lower 
amount of game events will interfere with this relation 
among the two events. Another consideration worth of 
mention is that a high probability of having obsolete events 
represents a realistic scenario for a vast plethora of possible 
games (i.e., adventure, strategic, car race, flight simulator, 
etc.). For instance, it can be argued that most of the events 
generated in games are just independent moves. In other 
words, critical (correlated) game events that cannot become 
obsolete have to be considered only sporadically, such as 
during collisions or shots, and typically represent even less 
than the 10% of the whole set of game events. An extensive 
discussion of this claim has been reported in [Palazzi et al. 
2006]. 
 
EXPERIMENTAL RESULTS 
 
Measures of Interest 
 
In this study we were interested in evaluating the following 
measurements: 
 
• The average number of game events with a GTD higher 

than GIT. Obviously, the lower this average value, the 
higher the level of interactivity and responsiveness 
provided by the system. 

• The amount of activated rollback procedures. Also in 
this case, the lower this value the lower the 
computational overhead added in the synchronization 
process and the higher the responsiveness degree. 

• The amount of obsolete events which are dropped by 
our scheme. 

 
To measure the benefits introduced by the use of the notions 
of obsolescence and correlation, we contrasted our OOS 
scheme with an implementation of the well known Time 
Warp [Jefferson 1985]. 
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Figure 2: Average Percentage of Events with GTD over 
GIT, ADT = 30 msec 

 
 

Outcomes 
 
Figure 2 and 3 report the average amount of events that 
experienced a GTD value that is higher than GIT. The two 
charts correspond to different ADT values, i.e., different 
paces of generation of game events at clients. As can be 
noticed, our OOS scheme performs better than Time Warp, 
thus ensuring a higher interactivity degree. Specifically, with 
our scheme, when the ADT is set equal to 45% and the 
probability of non-correlation is above 70%, only a 
negligible number of game events experience a GTD which 
is above the interactivity threshold. 
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Figure 3: Average Percentage of Events with GTD over 
GIT, ADT = 45 msec 

 
Figures 4 and 5, instead, report the average rollback ratio 
experienced by the two considered optimistic 
synchronization algorithms during our tests. In substance, 
each chart reports an averaged number obtained by dividing 
the total number of performed rollbacks over the total 
number of generated events. As expected, since obsolete 
events are dropped during the event notification activity, the 
need for rollbacks diminishes when resorting to our OOS 
scheme. 
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Figure 4: Rollback Ratio, ADT = 30 msec 
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Figure 5: Rollback Ratio, ADT = 45 msec 
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Figure 6: Percentage of Dropped Events, ADT = 30 msec, 
Meucci refers to the host in Cesena, Tigrana refers to the 

host in Bologna, Mykonos refers to the host in Los Angeles 
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Figure 7: Percentage of Dropped Events, ADT = 45 msec, 
Meucci refers to the host in Cesena, Tigrana refers to the 

host in Bologna, Mykonos refers to the host in Los Angeles 
 
It can be noticed that when the probability of obsolescence 
grows up to 90%, the rollback ratio does not decrease 
linearly. Probably, this effect is due to the fact that events 

locally generated at a given GSS are always timestamped, 
notified to other GSSs, and then optimistically processed at 
that GSS as soon as they are received from the client. In 
other words, events generated by players connected to that 
GSS are, on average, processed before those (with similar 
timestamps) generated by clients connected to other GSSs. 
Hence, a given ratio of rollbacks is inevitable when resorting 
to optimistic synchronization schemes. Nevertheless, our 
scheme improves this considered performance metric. 
 
Figures 6 and 7 show the average percentage of obsolete 
events, dropped at each GSS during our tests, depending on 
the considered ADT. As a first obvious consideration, it 
results that the U.S. node (i.e., Mykonos, see also Figure 1) 
drops a higher amount of game events, since there are higher 
network latencies to reach that node with respect to the other 
ones placed in Italy (i.e., Meucci and Tigrana, see also 
Figure 1). It is worth noticing that in both charts, the number 
of dropped events initially grows with the percentage of non 
correlation. This can be explained with the fact that, the 
more the number of available events that become obsolete 
(i.e., non correlated to other ones generated by other 
players), the more each GSS is able to drop obsolete events 
for an augmented interactivity. Surprisingly, once surpassed 
a given percentage of non correlation probability, the 
number of dropped events decreases considerably. This is 
probably due to the fact that, with a high non correlation 
(i.e., higher obsolescence) probability, our scheme is able to 
provide a high level of interactivity; thus, game events are 
typically processed before they can become obsolete.  
 
Obviously, performances improve with a higher ADT, since 
a slower pace of generation of game events imply a smaller 
number of game events to be transmitted, managed and 
processed per unit of time.  
 
As a final consideration, these results confirm those obtained 
thought the use of simulations. Thus, we are able to 
conclude that our scheme can be of real service to guarantee 
interactive gaming experiences in massively distributed 
MOGs while maintaining the coherence of the view of the 
game evolution at different, mirrored game servers. 
 
CONCLUSIONS 
 
In this paper, we have reported on a real experimental 
campaign we have built so as to assess our OOS algorithm.  
 
As a main outcome of our evaluation, we found out that 
OOS is of real service when MOGs are deployed over 
scalable mirrored game server architectures. Indeed, OOS 
could really improve the responsiveness degree provided by 
the system, while maintaining game state consistency.  
 
We also observed that physical clocks’ nodes may really 
drift apart during the game evolution. To face this issue, a 
periodic physical clock synchronization approach should be 
utilized to maintain short clock skews among nodes.  
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