
Developing Natural Language Enabled Games in (Extended) SCXML

Jenny Brusk1 and Torbjörn Lager2

1 Department of Game Design, Narrative and Time-based Media, Gotland University College, Sweden
2 Department of Linguistics, Göteborg University, Sweden

Email: jenny.brusk@hgo.se, torbjorn.lager@ling.gu.se

Abstract
The World Wide Web Consortium (W3C) has a standard in the
pipeline – called SCXML – that may turn out to be very suitable
for the design and implementation of games, in particular games
featuring (possibly multimodal) natural language dialogue. We
see three main reasons why SCXML may be a good fit for the
game industry: 1) SCXML is all about statecharts – a powerful
extension of finite-state machines – and we argue that state-
charts has the right kind of expressivity for game design and de-
velopment, 2) SCXML is an XML dialect (soon to be) endorsed
by the W3C, and will thus become a part of a web infrastructure
comprising speech technology and telephony, as well as other
useful technologies for building games of certain genres, and
3) SCXML is designed for extensibility and it appears that it
would be fairly straightforward – and very worthwhile – to build
a game oriented extension (“profile”) around the SCXML core.
The paper also presents an experimental implementation of
SCXML, accessible from a user-friendly web-interface at
<http://www.ling.gu.se/~lager/Labs/G-SCXML-Lab/>.

1. INTRODUCTION

We want this paper to serve as a pointer to the fact that the
World Wide Web Consortium (W3C) has a standard in the
pipeline – called SCXML – that may turn out to be very suit-
able for the design and implementation of games, in particular
games featuring natural language dialogue.1 The W3C does
not explicitly promote SCXML as a tool for building games,
but rather as (part of) a framework for building (multimodal)
dialogue systems. Still, there are three main reasons why
SCXML may be a good fit for the game industry:

1. SCXML is all about statecharts – a powerful gener-
alisation/extension of finite-state machines. We ar-
gue that statecharts has the right kind of expressivity
for game design and development.

2. SCXML is an XML dialect (soon to be) endorsed by
the W3C, and will thus become an integral part of a
bigger picture – a web infrastructure comprising
speech technology, telephony, and other useful tech-
nologies for building games of certain genres.

3. SCXML is designed for extensibility, and it appears
that it would be fairly straightforward – and very
worthwhile – to build a game oriented extension
(“profile”) around the SCXML core.

The first three sections of this paper deals with each of these
points, followed by a section where an implementation (ac-
cessible online) is presented, and finally by a section where
we summarize and draw some conclusions.

1 The present paper is based on the January 2006 SCXML
working draft, but with a few syntactic simplifications.

2. SCXML = STATE CHART XML

SCXML can be described as an attempt to render Harel state-
charts (Harel 1987) in XML. Harel developed his statecharts
as a graphical notation for specifying reactive systems in
great detail. In its simplest form, a statechart is just a finite
state machine, where state transitions are triggered by events
appearing in an event queue. Let us begin with a very simple
example in the form of a ‘game’ where a display will show
“YOU WON! Play again?” if the player pushes a Play-button,
and then “Push to Play” if he pushes the Again-button. Not
much fun, but it serves to introduce some notation.

Just like ordinary finite-state machines, statecharts have a
graphical notation – for “tapping the potential of high band-
width spatial intelligence, as opposed to lexical intelligence
used with textual information” (Samek 2002). The statechart
controlling our game could simply be:

Figure 1: Game statechart

Any statechart can be translated into a document written in
the linear XML-based syntax of SCXML. Here, for example,
is the SCXML document capturing the above statechart, and
thus the flow of our simple game:
<scxml target="s1">
 <state id="s1">
 <transition event="play" target="s2"/>
 </state>
 <state id="s2">
 <transition event="reset" target="s1"/>
 </state>
</scxml>

An SCXML document such as this can be executed by an
SCXML conforming processor, greatly simplifying the step
from specification into running game application.

Harel (1987) also introduced a number of (at the time) novel
extensions to finite-state machines, which are also present in
SCXML, including:

● Hierarchy

● History

● Concurrency

● Broadcast communication

● Datamodel (a.k.a. “extended state variables”)

s1 s2play

reset

Hierarchy. Statecharts may be hierarchical, i.e. a state may
contain another statechart down to an arbitrary depth. From a
methodological point of view this is important, since it allows
us to apply the principles of refinement (a top-down design
process in which a state is refined into a number of substates
and the transitions between the substates spelled out in detail)
and clustering (a bottom-up design process in which a number
of similar states are grouped together under the umbrella of a
superstate). These principles are very general, and they are
certainly relevant to game design as well.

History. A complex state may contain a history state, serving
as a memory of which substate S the complex state was in,
the last time it was left for another state. Transition to the
history state implies a transition to S.

The statechart in Figure 2 exemplifies hierarchy and history
by enhancing our simple game with a pause-and-resume
functionality:

Figure 2: Pause-and-resume

Suppose that the current state is s2, and that an event “pause”
appears in the event queue. The transitions leaving s2 are
tried from the inside and out, and since “reset” does not match
the first event in the queue, but “pause” does, a transition to
the interrupted state takes place. If a “resume” event
shows up in the queue, the system transfers to the history state
h, which implies a transition back to the s2 state again.

The SCXML documents corresponding to Figure 2 would be:
<scxml target="play">
 <state id="play" target="s1">
 <history id="h" target="s1"/>
 <state id="s1">
 <transition event="play" target="s2"/>
 </state>
 <state id="s2">
 <transition event="reset" target="s1"/>
 </state>
 <transition event="pause"
 target="interrupted"/>
 </state>
 <state id="interrupted">
 <transition event="resume" target="h"/>
 </state>
</scxml>

Already at this point, it should be clear that statecharts, and
thus also SCXML, are well-suited for the design and imple-
mentation of game flow, at least the kind of game flow where
the progression between game states is more or less explicit,
and perhaps even scripted.

Concurrency. Two or more statecharts may be run in
parallel, which basically means that that their parent
statechart is in two or more states at the same time. This is an
important mechanism for introducing independency and
orthogonality into a design. Concurrency may for example be
useful when the flow of a game is not (only) modelled

directly (or scripted), but when the NPCs2 – their states-of-
mind, states-of-body, as well as their (verbal and non-verbal)
behaviors – are modelled in the hope that a good game will
emerge from the interaction between different NPCs and
between NPCs and human players. In such cases it makes
sense to model each NPC as a separate statechart, running in
parallel with each other, and running in parallel with a
statechart modelling the environment.

Just to give a hint of how this might look like in SCXML, we
give a high-level view of an architecture where an NPC’s
‘emotions’ and its reactive behaviors are working indepen-
dently. First as a statechart in the graphical notation:

Figure 3: Emotion and behavior

and then translated into SCXML:
<parallel id="agent">
 <parallel id="emotions">
 <state id="AF-dimension">
 <state id="anger">
 <transition event="e" target="fear"/>
 </state>
 <state id="fear">
 <transition event="d" target="anger"/>
 </state>
 </state>
 <state id="AS-dimension">
 <state id="anticip">
 <transition event="e" target="surprise"/>
 </state>
 <state id="surprise">
 <transition event="f" target="anticip"/>
 </state>
 </state>
 </parallel>
 <state id="behavior">
 <state id="attacking">
 <transition event="e" target="fleeing"/>
 </state>
 <state id="fleeing">
 <transition event="g" target="attacking"/>
 </state>
 </state>
</parallel>

The idea is that in the event of (say) an explosion (the event
named “e”) the NPC will end up in the states of fear, surprise
and flight behavior. Then, if his friend dies (the event named
“d”), fear will turn into anger, and he will attack instead. Note
that if we did not have access to concurrency, we would have
had to distinguish the atomic state FearSurpriseFleeing from

2 NPC = Non-player character, i.e. a game character not controlled
by the player.

agent

attacking fleeing

behavior

emotions

anger

fear

AF-dimension

e d

e
g

anticipation

surprise

AS-dimension

e f
play

s1 s2

reset

play

game

interrupted

pause

resume
H

other atomic states such as AngerSurpriseFleeing, Anger-
AttackFleeing and what have we. And as soon as we wanted
to extend (say) the emotional dimensions from two into (say)
three, we would see a large increase in the number of states
and transitions required. It is well-known (cf Harel 1987;
Horrocks 1999) that concurrency and to a some extent also
hierarchy are the means by which this often cited problem
with ordinary finite state machines – the exponential growth
in the number of states and transitions – can be treated.

Broadcast communication. One statechart S1 may communi-
cate with another statechart S2 (running in parallel with S1) by
placing, in the global event queue, an event that triggers a
transition in S2. Since the event can in principle be detected
by any transition in any state in the statechart, this is often re-
ferred to as “broadcast communication”.

We exemplify parallel statecharts and the communication be-
tween their substates with an SCXML document featuring
two ‘agents’ playing ping-pong.
<scxml target="start">
 <parallel id="start">
 <state id="Pinger">
 <onentry>
 <send event="ping"/>
 </onentry>
 <transition event="pong">
 <send event="ping" delay="1s"/>
 </transition>
 </state>
 <state id="Ponger">
 <transition event="ping">
 <send event="pong" delay="1s"/>
 </transition>
 </state>
 </parallel>
</scxml>

Note the use of ‘targetless’ <transition> elements here, where
the matching of an event results in the running of the
transition’s actions (executable content such as the <send>
elements) but not in any actual transitions. Note also that we
have delayed each sending of an event with one second, just
to make the speed of the ping-pong game a bit more realistic.

Datamodel. SCXML gives authors the ability to define a data
model as part of an SCXML document. A data model consists
of a <datamodel> element containing one or more <data> ele-
ments, each of which may contain an XML description of
data. The value of the cond attribute in a <transition>
element may be an expression referencing the data, and
transitions may thus be conditioned on the data. The <assign>
element may be used in actions, or in <onentry> or <onexit>
elements, to modify the data. As a simple illustration, the
following state (which could be one of several parallel states)
serves as a score counter, transferring to the “GameOver”
state when the count is 3, and incrementing the count each
time the “point” event shows up in the global event queue.
<state id="Scorer">
 <datamodel>
 <data name="Score" expr="0"/>
 </datamodel>
 <transition cond="Score==3" target="GameOver"/>
 <transition event="point">
 <assign name="Score" expr="Score+1"/>
 </transition>
</state>

3. SCXML IN THE BIGGER PICTURE

SCXML is meant to be used to control the flow of an applica-
tion, be it a game or a (multimodal) dialogue system. It is not
intended to manage lots of data, nor to directly interact with
the user. In this section we will look closer at one particular
kind of user interaction – dialogue using natural language.

There are several ways in which natural language dialogue
may come into play in games. Assuming the commonly made
distinction between game (G), player (P), player character
(PC) and non-player character (NPC), and stretching the no-
tion of dialogue somewhat, we may distinguish between:

● P in dialogue with G: Games may be ‘voice con-
trolled’. Instead of hitting the P button in order to
pause a game, the player may just say “pause”.

● P in dialogue with PC: Player is directing his player
character using dialogue.

● P in dialogue with P: Player talking to player, using
chat or voice.

● NPC in dialogue with NPC: The use of natural
language for commenting on the states and the
events of a game. Examples such as the conversa-
tions between NPCs in SIMS, and the soccer
commentators in FIFA 200X games comes to mind.

● P in dialogue with NPC: For the purpose of letting
NPCs provide the player with background story,
quests and directions for progressing the game, but
also in order to uphold ‘social relationships’ with
NPCs. Dialogues will thus sometimes be task
oriented, sometimes of a more socially motivated
kind.

We believe that the most successful natural language enabled
games will treat natural language dialogue as an integral part
of the game, rather than something added on as an after-
thought. We believe that in order to create such games, de-
signers need to consider dialogue flow a part of the game
flow, treat dialogue actions on par with other game actions,
and think of the current game state as comprising also the
state(s) of the dialogue(s) taking place at the current point in
time. Indeed, we think that the best games will be built by
those who are just as skilled at dialogue flow design as they
are skilled at game (flow) design in general, and perhaps
future books about game design patterns will have a chapter
or two where good game dialogue design patterns are present-
ed and explained.

To drive this point home even further, note that conversations
between humans often are of the multimodal kind, and that
realistic dialogue with NPCs therefore should be too. An NPC
should be able to nod instead of saying “yes”, or nod and say
”yes” at the same time. Thus, the boundary between control-
ling the visual appearance and behavior of an NPC – how it
looks and what it does – and its natural language capabilities
– what it says – is not very clearcut. Thus, these things should
better be controlled and synchronized using one and the same
mechanism.

As we have indicated already, SCXML is not supposed to
directly interact with the user. Rather, it requests user inter-
action by invoking a presentation component running in

parallel with the SCXML process, and communicating with
this component through asynchronous events. Presentation
components may support modalities of different kinds,
including graphics, voice or gestures. Concentrating on
presentation components for spoken language dialogue (a.k.a.
“voice widgets”) we may assume that they include things
like:

● A Text-To-Speech (TTS) component for presenting
the player with spoken information.

● An Automatic Speech Recognition (ASR) compo-
nent to collect spoken information from the player.

● A combination of TTS and ASR to implement some-
thing akin to a field, prompting for, and collecting, a
value of one single parameter from the player.

● A form-filling algorithm (a.k.a. FIA) running over an
(internal) datamodel, and using TTS and ASR for
output and input, respectively, and thus implement-
ing something akin to a form, collecting values for a
set of parameters from the player.

● Other dialogue management components, tailored to
particular conversational modes, e.g. social talk or
negotiation.

Note that presentation components may be simple, as the first
two components in the above list, or complex, as the last
three. (The very last one might of course be very complex.) A
complex component may in fact be made up from other
(simple or complex) components (perhaps using SCXML for
controlling the interplay between their parts, perhaps not), but
for all intents and purposes their complexity is hidden from
the developer, and the only way to communicate with them is
through the global event queue that they share with the invok-
ing SCXML document.

Example 1. We could enhance our simple game with voice-
controlled pause-and-resume functionality by invoking an
ASR component, like so:
 <state id="s1">
 <invoke id="v"
 target="v3:grammar"
 src="play_or_pause.vxml"/>
 <transition event="*.play" target="s2"/>
 </state>

Note that the semantics of <invoke> dictates that the ASR as
well as the button are deactivated again as soon as the state s1
is left, i.e. as soon as either presentation component generates
an event matching the pattern *.play.

Example 2. In order to collect a “Yes” or “No” from the
player as a response to a question from an NPC, the question
and the grammar for recognizing the response could be
encoded in a VoiceXML document “yesno.vxml” and
invoked from SCXML like so:
<state id="YesOrNo">
 <invoke id="yn"
 target="v3:field"
 src="yesno.vxml"/>
 <transition event="yn.yes" target="Yes" />
 <transition event="yn.no" target="No" />
 <transition event="yn.*" target="YesOrNo" />
</state>
<state id="Yes" ... />
<state id="No" ... />

Example 3. The above SCXML snippet invoked a simple
VoiceXML field, collecting only one value for a parameter
from the user, but for a more complex interaction with the
user, the developer may instead choose to invoke a
VoiceXML form, consisting of several fields, that will be
filled with information during the course of the interaction
with the user and returned to the SCXML interpreter after-
wards, in the form of an event with a payload representing the
result. The invoking state may look as follows
<state id="buyTicket">
 <invoke target="v3:form"
 src="buyTicket.vxml"/>
 <transition event="buyTicket.done".../>
 <transition event="buyTicket.cancelled"
 target=”chat”.../>
</state>

and the invoked VoiceXML document like this:
<vxml version="2.1">
 <form id="get_from_and_to_planets">
 <grammar src="from_to.grxml"
 type="application/srgs+xml"/>
 <initial name="bypass_init">
 <prompt>Fly from and to where?</prompt>
 <nomatch count="1">
 Sorry dude, but I didn’t get that.
 </nomatch>
 <nomatch count="2">
 I'm sorry, I still don’t understand.
 <assign name="bypass_init" expr="true"/>
 </nomatch>
 </initial>
 <field name="from_planet">
 <grammar src="planet.grxml"
 type="application/srgs+xml"/>
 <prompt>From which planet?</prompt>
 </field>
 <field name="to_planet">
 <grammar src="planet.grxml"
 type="application/srgs+xml"/>
 <prompt>To which planet?</prompt>
 </field>
 </form>
</vxml>

Initially, a player is expected to respond with (say) “From
Mars to Venus”, in order to fill both fields in one shot.
However, if the response is not recognized by the ASR (using
the specified grammars) after two attempts, the NPC tries
instead to split the initial question into two parts, expecting
responses such as “Mars” or “Venus”, filling one field at a
time. Going into more detail about VoiceXML is beyond the
scope of this papers. Suffice it to say that VoiceXML is a
well-proven and mature technology for the design and imple-
mentation of task-oriented dialogue – a technology that a
game developer willing to work with SCXML would be able
to tap right into.

Example 4. But VoiceXML will most likely not work very
well for ‘social chat’ kinds of conversations, and we therefore
propose a strategy in which the player (or the NPC) is
allowed to ‘escape’ from a task oriented dialogue into a
‘social chat’ kind of conversation. The idea would be to try to
detect, from inside the VXML form, that the form based dia-
logue is not likely to succeed (e.g. by giving up after having
made three attempts at understanding what the user is saying)
and instead return an event that will cause a transfer to a state
that will invoke a dialogue manager/ASR/TTS combination
able to deal with ‘social chat’.3 After a while (say ten seconds

3 We use AIML as an example here (Wallace 2005).

of chat), or if the NPC gets some sort of indication that the
user would like to buy that ticket anyway, we can always let
the NPC return to the form-based, task oriented dialogue
again, if we think that this would be important for the
progression of the game.
<state id="chat">
 <invoke id=”c”
 target="AIML"
 src="chat.aiml"/>
 <transition event="c.done"
 target=”buyTicket.../>
 <transition delay=”10s” target=”buyTicket.../>
</state>

Example 5. SCXML+VoiceXML is not just a framework for
building spoken dialogue systems, but also for controlling
telephony – a framework in which technologies for voice
recognition, voice-based web pages, touch-tone control,
capture of phone call audio, outbound calling (i.e. initiate a
call to another phone) all come together, creating a
marvellous playground for building new and innovative
games. As an example of such a game (which could have
been built using SCXML but was not), we mention Electronic
Arts’ Majestic – a psychological web-based thriller released
in 2001 that actually involved the players in the game,
sending them e-mails, calling them on the phone and sending
them Instant Messages when they least expected.

4. EXTENDING SCXML FOR GAME DEVELOPMENT

SCXML is designed with extensibility in mind (cf Barnett et
al. 2006), and our own investigations (which also include
some explorative implementation work that we will report on
in the next section) suggest that there is indeed room for
simple extensions that will increase the expressivity of
SCXML considerably.

In games, but not so often in ‘serious’ applications, a certain
level of unpredictability can be an advantage. Since the W3C
are designing SCXML with ‘serious’ applications in mind,
they have not included any simple means for making choices
based on chance. It can be done, but only in a rather clumsy
way (witness appendix D in the January SCXML draft
specification). As a first stab at this problem we propose that
a new attribute prob, taking (an expression evaluating to) a
value p between 0.0 and 1.0 and defaulting to 1.0, be added
for the <transition> element, with the semantics that if all (if
any) other conditions are satisfied, the transition in question is
taken with probability p. For example, if the state s0 in the
following snippet is reached, either s1, s2 or s3 will immedi-
ately be entered, with an equal chance (33%) for each of the
alternatives.
<state id="s0">
 <transition prob=”0.33” target=”s1”/>
 <transition prob=”0.5” target=”s2”.../>
 <transition target=”s3”.../>
</state>

Note that since the transitions are tried in document order,
from top to bottom, it would not be correct to assign the
probability 0.33 to each of them, if the intention was the
above.

Our other suggestions deals with game AI. It should already
be obvious that SCXML is more than powerful enough to
implement conventional FSM-based game AI, but in this

section we will show that simple extensions to SCXML
would allow us to work with forward-chaining condition-
action rules and decision trees as well, putting two other
useful conventional game AI programming paradigms in the
hands of the developer.

Our first suggestion is that the cond attribute of the <transi-
tion> element should accept a Prolog style query rather than
an ordinary boolean expression, i.e. a query that evaluates to
true of false (just like an ordinary boolean expression) but
which will possibly also bind variables if evaluated to true.
We suggest that the names of these variables be declared in a
new attribute vars, and that the values of them are made
available in the actions of the <transition>, as well as in the
<onentry> element in the target state. A (possibly targetless)
<transition> equipped with such a condition thus becomes a
powerful forward chaining condition-action rule, and an
ordered sequence of such transitions forms a so called pro-
duction system, that can be used to implement the AI of a
game. Here is a simple (non-game) example, implementing
Euclid’s algorithm for calculating the greatest common divi-
sor of a set of numbers:
<scxml target="loop">
 <datamodel>
 <data name="S">[25 10 15 30]</data>
 </datamodel>
 <state id="loop">
 <transition vars="X Y"
 cond="{Member S X}
 {Member S Y}
 X>:Y">
 <assign name="S" expr="{Del S X}"/>
 <assign name="S“ expr="{Add S X-Y}"/>
 </transition>
 <transition vars="X"
 cond="{Member S X}"
 target="stop">
 <log expr="'GCD = ‘#X"/>
 </transition>
 </state>
 <state id="stop" final="true"/>
</scxml>

Note that the strategy for selecting the next rule to fire is
determined by the ordinary SCXML execution model – the
first rule in document order with a condition evaluating to
true will be executed. To avoid infinite loops, the programmer
must ensure that the datamodel that satisfied the rule’s condi-
tions is actually changed by the actions of this rule. Alterna-
tively, the next rule to be executed could be randomly select-
ed, by means of the prob attribute – causing an unpredictabil-
ity that could be just what we are looking for in a game.

Figure 4: Decision tree inspired by SIMS

Our second suggestion is that the <transition> element should
allow other <transition> elements as children, thus allowing a
developer to encode decision trees directly in SCXML. For
example, the (perhaps SIMS-relevant?) decision tree in
Figure 4 could be rendered in SCXML in a way that clearly
shows its structure, as follows:
<transition event="situation">
 <transition cond="Eventdata.visiting==yes"
 target="Cinema"/>
 <transition cond="Eventdata.visiting==no">
 <transition cond="Eventdata.weather==sunny"
 target="PlayTennis"/>
 <transition cond="Eventdata.weather==windy">
 <transition cond="Eventdata.money==rich"
 target="Shopping"/>
 <transition cond="Eventdata.money==poor"
 target="Cinema"/>
 </transition>
 <transition cond="Eventdata.weather==rainy"
 target="StayIn"/>
 </transition>
</transition>

Combined with the prob attribute, a probabilistic decision
tree could be represented as well. The probabilities could be
assigned using a machine learning method, and even be recal-
culated at runtime, allowing a form of adaptation to changing
circumstances during a game to take place. A useful idiom
might be to let one statechart monitor the activities of another
statechart running in parallel to it, and adjust the values of its
transition probabilities at runtime (this would work for delay
times too).

5. IMPLEMENTATION AND MORE EXAMPLES

We have built one of the first implementations of SCXML (in
Oz, using Oz as a scripting language). A web interface to a
version of our software – called G-SCXML – is available at
<http://www.ling.gu.se/~lager/Labs/G-SCXML-Lab/>.
Visitors are able to try out a number of small examples
related to gaming (do not expect any full games though) and
are also able to write their own examples, either from scratch,
or by modifying the ones given.

6. SUMMARY AND CONCLUSIONS

This paper has presented a large number of reasons for why
SCXML should be a good fit for the gaming industry. We
would like to summarize our arguments as follows: At its
core, SCXML has FSMs – and it has been shown, over and
over again, that FSMs are useful for describing the flow of a
game, i.e. the pace and sequence of its states and events, and
the range of choices in its progression. As a result of its Harel
Statechart heritage, SCXML also supports hierarchy and con-
currency, and thereby avoids the most pressing problem with
ordinary FSMs – the notorious state explosion problem. The
presence of hierarchy furthermore allows the developer to
describe game flow at different levels of granularity, and to
apply the methodological principles of top-down refinement
and bottom-up clustering. In addition, the fact that SCXML is
closely aligned to statechart theory and UML2 will help those
using model driven development methodologies.

The support for concurrency furthermore allows a game
developer to model NPCs and their environment as separate
statecharts, as well as allowing him to structure the of NPC

statecharts into ‘mind modules’, thereby allowing NPCs to do
more than one thing at the time – listening, ‘thinking’ and
talking, for example.

The fact that SCXML is endorsed by the W3C may translate
to better support in tooling, number of implementations and
various runtime environments. In particular SCXML and
VoiceXML forms a powerful combination, where SCXML is
used for specifying and implementing the flow aspect of a
dialogue system, and VoiceXML supplies the voice widgets
required. This enables an approach to the development of
natural language enabled games where natural language
dialogue flow is seen as just an aspect of the overall game
flow, and where SCXML is used for specifying and
implementing (the major parts) of both kinds of flow.

Finite-state machines, condition-action rules and decision
trees are perhaps the most commonly used AI programming
devices used in games today. We have shown that SCXML
could be extended to handle also the latter two in an intuitive
and straightforward way, but more work here is certainly
needed.

We conclude by stating that we see an opportunity here, for
(the relevant part of) the game industry and the spoken
dialogue industry to share, not only (core) standards and
software infrastructure, but to also a (future) work force
skilled in the use of such standards and software. Since it
would of course not be reasonable to expect the latter industry
to look after the interest of the former, we believe that the
game industry ought to 1) keep an eye on where the W3C is
heading with SCXML, and 2) start asking itself whether
SCXML might not be a suitable point of departure for an
effort to create an XML-based standard more tailored to its
own particular needs.

REFERENCES

Barnett, Jim et al. (2006) State Chart XML (SCXML): State
Machine Notation for Control Abstraction, W3C Working
Draft 24 January 2006 <http://www.w3.org/TR/scxml/>.

Bartolomeo, Dave (2003) Screaming at the Machine: Using
Speech Recognition as a Complement to Traditional
Game Input Technique, In: Game Developers Conference
Proceedings, 2003.

Harel, David (1987) Statecharts: A Visual Formalism for
Complex Systems, In: Science of Computer Programming
8, North-Holland.

Horrocks, Ian (1999) Constructing the User Interface with
Statecharts, Addison Wesley.

Houlette, Ryan and Fu, Dan (2003) The Ultimate Guide to
FSMs in Games, In: AI Game Programming Wisdom 2,
2003.

Samek, Miro (2002) Practical Statecharts in C/C++, CMP-
Books.

Wallace, Richard (2005) Artificial Intelligence Markup
Language (AIML) Version 1.0.1, Working Draft 2005
<http://docs.aitools.org/aiml/spec/WD-aiml>

http://www.w3.org/TR/scxml/
http://docs.aitools.org/aiml/spec/WD-aiml

	1.INTRODUCTION
	2.SCXML = STATE CHART XML
	3.SCXML IN THE BIGGER PICTURE
	4.EXTENDING SCXML FOR GAME DEVELOPMENT
	5.IMPLEMENTATION AND MORE EXAMPLES
	6.SUMMARY AND CONCLUSIONS

