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Abstract

Developing broadband and internet technologies
offers possibilities for new ways of minimizing the
server bottleneck in online gaming as well as an
increase in response and reliability. We look at
a peer-to-peer (P2P) approach to circumnavigate
some of the reliance on the central server and pro-
pose a protocol designed to increase responsive-
ness and reliability–which is also useful in meet-
ing the unique requirements of a P2P approach.

1 Introduction

Collectively, Massively Multiplayer Online
Games (MMOG) control a significant portion
of the gaming market [3]. Indeed, they are the
latest and greatest thing as is evidenced by the
recent popularity of games such as World of
Warcraft [2]. Major gaming companies have
decided to devote significant resources and
development time in order to create, maintain,
and support old and new MMOGs. There are,
however, several issues that they all share to
a greater or lesser degree. Generally, MMOGs
feature lower reliability and responsiveness than
other gaming mediums, which is partially intrin-
sic to their nature. This is not to say that it is
intolerable; merely that they are not known for
extremely high responsiveness. This situation
is not one that is desirable to most players,
although it is readily tolerated. Moreover, there
is a limit of several thousand players per server,
although this varies from design to design, and

reliable numbers are difficult to attain.
One can draw a several conclusions from these

facts. We will revisit the first two issues later,
but first we must address the issue of player
limits. One can reasonably construe that the
server is the bottleneck, as there is a limit to the
amount of information a single machine can han-
dle and transmit. Although this increases over
time as machines get faster, there are ways to
get around this–namely parallel and distributed
models where many lesser machines take the
place of one major machine. P2P models also
achieve a similar goal as a group of mediocre ma-
chines collectively perform a task far beyond their
individual capabilities [13].

To revisit the first issue, that of responsive-
ness and reliability, the more information that
is transmitted, the more likely it is for some of
that information to be dropped. Also, the server
acts as a single point of failure in the entire sys-
tem. Additionally, all the clients may not be able
to attain a good connection to the server, if for
no other reason than geographic location. Disre-
garding internet lag, the server itself may be slow
to respond simply due to being overloaded with
too many tasks.

There is a single solution that has the potential
to address all of these issues: P2P networking.
P2P based networks avoid a single point of fail-
ure and scale extremely well [17]; the more peers
involved, the more likely it is that a good connec-
tion can be made. The less the server is asked to
perform, the more users can be supported in a
single “world.” In section 2, we discuss this in
more detail.



This paper is structured as follows: we discuss
how P2P networking will aid in reducing server
needs in section 2 and present I3P, our proposed
protocol, in section 3 and include preliminary
cost analysis. In section 4, we discuss the cru-
cial process of signal selection. We conclude and
discuss future directions in section 5.

2 Method

The development of consumer broadband and
Internet technologies will provide new opportu-
nities for the utilization of P2P approaches in
multi-player games. Effective NAT traversal and
eventually IPv6 deployment will help ensure peer
connectivity, and increasing bandwidth will more
readily support more connections than just the
one to a server. P2P approaches can result in
less server load and lower latencies, so taking ad-
vantage of these developments will be a desirable
challenge to undertake. Additionally, these tech-
niques may ultimately lead to more players ex-
isting on a single server.

One method of applying a P2P approach to a
MMOG is to observe that you can partition parts
of the game into chunks that are managed by sub-
servers. This partitioning can be performed in a
variety of ways. One partitioning scheme would
be to partition the world into physical sections,
while another would be to partition the player
base into logical groups according to some criteria
such as locality to each other or a measure of the
likelihood of their interacting [13].

Once partitioned into tasks performable by
sub-servers, the next step is to transfer as many
of the tasks the sub-servers were performing onto
the player base as possible. In order to do
this, these tasks must be identified. First, the
sub-servers must authenticate and validate each
player. In addition, they must communicate per-
ceptive data to the clients and validate any re-
ceived messages. Lastly, the sub-servers must re-
member the state of each client and decide the
effect of the interaction of clients in addition to
any reaction the environment has to them.

One way to move some of these tasks onto
clients would be to have a group of clients
that continuously communicate their intentions
to each other, and amongst themselves decide on

a sequence of events. They may even decide the
results of their interactions, particularly if they
were all using the same seed. The major difficulty
in this is how to have them effectively communi-
cate with each other and decide on a sequence
of events. It is very important that the sequence
of events be the same for everyone. This is the
question this paper attempts to address: how to
reliably broadcast a player’s intentions to a group
of peers with whom s/he is communicating with.

In the ideal environment, which we consider
here, bandwidth is plentiful and players crave
high responsiveness and few network glitches. A
protocol which ekes as much responsiveness and
reliability out of the network as possible will
prove helpful.

In keeping with the trend in this paper, it
should be noted that in the future we will see in-
creasing utilization of wireless network technolo-
gies and increasing demands placed upon them
by users. Therefore, there will be an attendant
stress on reliability through additional packet loss
and latency glitches. Reliability will be crucial.

3 Protocol

Our solution is a protocol which strives for the
aforementioned goals by recruiting each peer to
forward messages to all the others. The key no-
tion is for each peer to keep track of which mes-
sages all the others have received. This will en-
able the peer to preemptively update the others
with whichever messages it believes them to be
missing. Under some circumstances, the need for
back-and-forth protocol negotiation will there-
fore be reduced, improving latency. If unneeded
messages are received from a forwarding peer,
they are simply discarded. A peer will take any
opportunity to inform other peers of its under-
standing of the current situation.

Suppose there are two signals which peer Z can
transmit:

1. Send message M from queue X to peer Y

2. Send “Z has received X up to N” to peer Y

The first signal merely conveys a sequence-
numbered user message, which may either have
originated on peer Z or on another peer (and is
being forwarded by peer Z).



The second signal is a means of indicating
which messages peer Z has received. After re-
ceiving this signal, peer Y would no longer need
to preserve messages N or older from peer X on
peer Z’s behalf. Once peer Y no longer needs to
preserve a message from X for anyone else, it is
safe to discard it.

These two signals are all the tools we need for
the protocol. Crafting the optimal signal to send
at any given point in time will be the challenge.
Optimization is also necessary to meet our design
goals, as the most unintelligent choices, such as
sending the same signal repeatedly, will result in
a broken protocol. A reasonable introductory al-
gorithm for signal selection should at least prove
that these signals are sufficient for building a
functional protocol, however poorly it performs.
We present such an algorithm in section 4.

We must stress that each of the signals defined
here is tiny. Once the transport layer [12], as-
sumed in this case to be UDP since much of the
work of TCP will be reconstructed by our pro-
tocol, adds its overhead, the signal payload will
be a distressingly small portion of the datagram.
It is a relatively straightforward matter to ame-
liorate this by concatenating several signals into
one datagram, thereby accepting the new con-
straint on the signal selection algorithm that the
destination peer for several concatenated signals
must match. The algorithm may decide to send
a smaller datagram than it could due to a fervent
desire to rush out a signal to another peer. This
concatenation is expected to be fairly necessary
in practice and is implicit in our algorithm.

Our algorithm combines several update signals
into one larger concept: a matrix of sequence
numbers which will be naively blasted over the
network repeatedly. This has the benefit of avoid-
ing complex logic for determining which update
signals to send; we just always send all of them.
We will also roll into the datagram an assort-
ment of old message signals from various queues,
which we believe that the current recipient peer
needs, until we run out of room at the practical
UDP datagram size limit of approximately 1, 280
bytes [11, 18]. An implementation of this algo-
rithm would not necessarily be coded in terms
of the underlying two-signal protocol; rather, the
underlying protocol is used as a logical backbone.

In getting started, as an example, suppose peer

A enqueues the first message for broadcast to
peers B and C. Peer A is maintaining knowl-
edge of the peer group in the form of sequence
numbers as follows:

A[B][A] = 0

which indicates to peer A that peer B believes
that A’s latest sequence number is 0.

As a consequence, when this message A1, with
sequence number 1, is enqueued, peer A knows
that peer B is unaware of it. It is suitable, then
to transmit this message to peer B. Along with
that message will be the entire matrix of sequence
numbers including:

A[A] = 1, 0, 0

indicating that peer A is aware that it knows that
it has received message 1 (obviously), and:

A[B] = 0, 0, 0

indicating that peer A is aware that peer B knows
that nobody has received any messages. Since
A has not yet received any transmission from B,
this is truth as A knows it. Peer A cannot assume
that B will know about A1, since the packet may
get lost along the way.

When peer B receives the transmission, it will
receive with it the A1 message and will therefore
be able to update its own personal set of sequence
numbers:

B[B] = 1, 0, 0

indicating that B is now aware of A1. Along
with the transmission is the entire matrix of A’s
sequence numbers, from which can be assimilated
an obvious fact:

B[A] = 1, 0, 0

indicating that peer B is now aware that peer A
is aware of A1.

Now, B, being a dutiful member of the peer
group should think himself aware of something
important:

B[C] = 0, 0, 0

which is interesting because B has A1 laying
around and would like to upgrade C’s knowledge.



In this way, C may receive A1 even if the trans-
mission directly from A to C failed; and it will
happen in more or less two network hop inter-
vals: A → B → C instead of the three it would
take, at best case, for A to recognize the failure
and retransmit, and B to acknowledge. If C hap-
pened to have a transmission en route to A when
the A → C transmission was lost, then A would
receive:

C[A] = 0, 0, 0

and know that either C has not yet received its
transmission of A1, or that it has been lost. De-
pending on the sense it may develop, in an ad-
vanced implementation, of the timing of commu-
nications between the two peers, it may choose
to go ahead and try another transmission. Or,
by the time that B receives the A1 transmission,
A may decide that it is time to transmit another
message, A2. In that case, since A has:

A[A] = 2, 0, 0

and

A[C] = 0, 0, 0

it then possesses approximately two messages
(A1 and A2) more than C has. Both messages
will go out with the transmission, and so the lost
message will be corrected without any error re-
covery protocol.

With this practice–in the most paranoid case–
given a restricted view of the situation involving
only the two peers, a peer could transmit the
same message over and over as fast and often as
possible until it receives an acknowledgment from
the receiving peer; all this in an effort to ensure
the speediest delivery to that peer. But since
a peer knows that it needs to update all other
peers anyway given the broadcast assumption in
this protocol, it may as well transmit to them all
and let them take care of forwarding the message
to anyone who may be missing it.

In implementation, we may have many mes-
sages to choose from that we feel need transmis-
sion. An incredibly naive technique can be used
to select messages, such as round robin selection
from the oldest messages in each queue until the
datagram is full, for example.

3.1 Efficiency

In analyzing bandwidth efficiency, we define an
overhead percentage equal to:

(TotalBytesSent− LogicalBytesBroadcast)
TotalBytesSent

An idealized broadcast which transmits each
message byte would have an overhead percent-
age of 0%. A straightforward, idealized simula-
tion of broadcasting by transmission of identical
messages to each peer would yield:

M(N − 1)−M

M(N − 1)
= 1− 1

N − 1

where M is the size of the message and N is the
number of peers in the network.

These efficiency values asymptotically ap-
proach 100% as overhead increases. Initial inves-
tigation into the bandwidth efficiency of this pro-
tocol reveals overhead percentages as low as 85%
for typical cases involving 5-10 peers and message
sizes from 40-200 bytes. Overhead can be higher
for smaller messages but can never be lower than
the corresponding levels for the straightforward
broadcast simulation.

4 Signal Selection

Since the promise of this protocol relies on a bet-
ter algorithm for signal selection, it behooves us
to discuss briefly what may be involved in this.

Suppose, in addition to the queues, we track
information such as when a message was added
to a queue, when it was last sent in a data signal
to each peer, how rapidly each kind of signal is
arriving from each peer, etc. Such information
we could consider our state, and each state can
be scored according to the desirability of what
is existing in that state. For example, it is per-
haps far more desirable to work on emptying a
very stale queue by sending a data signal for it
than it is to send an update signal for a fresh
and relatively unoccupied queue. Our best deci-
sion for the next transmission would be to under-
take the transition to the most valuable state. A
more sophisticated algorithm, then, would define
a scoring function with tunable parameters. The



following subsections discuss some principles to
take into consideration.

4.1 Recovery

We may want to try very hard to recover peers
that have fallen far behind. This parameter will
be determined by the cost to the application of
having its decision-making logic ruined by la-
tency.

Due to this factor, older messages have a higher
priority; we may decide to compensate by giv-
ing brand new messages a priority boost since
we may not want to penalize faster peers while
the network attempts to recover from the lagging
peer.

The falloff for the newness factor would be
modulated by our opinion of the quality of the
network. If we can assume that datagrams gen-
erally make it in the first try, then their bonus for
being new will wear off the first time a datagram
is sent.

4.2 Popularity

This dampens a score by selecting messages that
are likely to be sent frequently. Since each peer
has some idea of what each other peer has, then
it will have some information about how another
peer is doing its scoring. If another peer is likely
to score a message high, then we should score it
lower.

4.3 Responsiveness

1. Each peer should prioritize sending a mes-
sage to another that has just sent it some-
thing, so that it knows not to send it again.

2. Each peer should extra-prioritize sending a
packet to another that has just sent it some-
thing that it did not need–since the other
peer thinks it is old and that we need it
badly, it is likely to keep scoring it higher.

4.4 Time Effects

We can determine whether it is optimal to con-
catenate signals by considering whether it is pos-
sible to achieve a higher score by saving the time

cost of transmission overhead. This is not overly
difficult. Let us define time in terms of bytes
(knowing that it is readily convertible to actual
time by factoring in a bandwidth estimation or
requirement):

C(S(t)) = value of a state at time t

So, we pick one:

C(S1(t)) + C(S2(t + 28 + N))

This is the value of the state after action 1 plus
the value of the optimal state after action 2,
28 + N time units later where the signal asso-
ciated with S1 takes N bytes to transmit. Now,
consider the following cost:

C(S1(t)) + C(S3(t + n))

Here, S3 is constrained to a subset of states de-
fined as those reachable by sending a signal to
the same peer as involved in S1

Of course, since the optimal value for our next
state is now dependent on the optimal value for
the state after that, we descend into a recur-
sive definition. This has the benefit of setting
up something for spare CPU cores to do while
waiting for a datagram to transmit, even if the
value ends up being slight.

5 Conclusions and Future
Work

It is clear from our research that P2P networking
holds great promise in improving MMOG perfor-
mance. Indeed, MMOGs are already partitioned
into tasks performable by sub-servers. We have
discussed partitioning schemes that make more
sense in a P2P environment and ways in which
some tasks performed by the aformentioned sub-
servers could be offloaded onto the clients. The
I3P protocol is designed with efficiency in mind,
allowing peers to communicate with each other in
an economical manner and internally managing
non-receipt of transmissions.

Our signal selection and concatenation algo-
rithms are primitive in their current forms. An



obvious next step is to develop solid, parameteri-
zable algorithms and derive optimal values. The
simplicity of the core signals will aid in modeling
and simulation. A parallel effort in developing a
more intricate state definition, with more record-
keeping and performance variables, will provide a
toolbox upon which the algorithms can be built.
This could even facilitate the real-time selection
of entirely different, simpler algorithms, each op-
timized for different situations, which would be
activated as the situation demanded. These exer-
cises may provide us with insights into improve-
ments in the protocol.

Initial experimental results, however, look
promising. Indeed it is clear that sharing the
server load by delegating the work to a set of
peers within the P2P gaming setting is cost ef-
fective for the game server side of things. The
I3P protocol is intrinsically capable of handling
redundancy and transmission errors.

With respect to implementing I3P in a real-
world gaming situation, we are currently work-
ing on a multiplayer game built on Microsoft’s
XNA Framework [7]. The software targets both
the Xbox 360, where the game is enjoyed by four
players on the same monitor, and a Windows
PC, where the I3P protocol will take the place of
the player-to-player communication. The simple
communication needs of four closely-interacting
players resemble the needs of a small group in
a MMOG. Initial implementations of I3P in this
setting will provide some rudimentary proof of
concept; however, more work will be required
in order to analyze and prove its efficiency in a
MMOG setting.

We must also develop the setup and mainte-
nance procedures necessary for making the I3P
protocol useful in games. Particularly, newly-
entering peers will confuse everyone else by their
sudden appearance unless an additional mecha-
nism is added to prepare existing peers for the
discontinuity. Future analysis may also draw
more direct analogies to TCP in an effort to glean
clues from it for the details of an implementation.
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