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Systems Engineering Group: Objectives

The Systems Engineering group aims to use quantitative methods
for the analysis, design and implementation of (embedded) systems
exhibiting concurrent behavior.

The objectives are to develop theory and techniques, and to build
computational tools, inspired by mechanical engineering science,
computer science and mathematics, and to apply these in selected
cases from industry.
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Application domains

Networks:

• semiconductor plants

• automotive plants

• transport systems

• container terminals
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Application domains

Machines:

• semiconductor industry
• front end: lithographic systems
• back end: chip mounting

• medical systems

• printing / paper handling machines
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Trend

The complexity of a high tech embedded system increases
considerably with each new generation.

This leads to

• increasing time to market (T ↑),
• decreasing quality (Q ↓), and

• increasing cost and manpower (C ↑).

How can time to market be decreased (T ↓), quality be increased
(Q ↑), without increasing cost and man power (C =)?
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Current (embedded) system development
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When integrating different interacting subsystems, usually:

• Requirements (R..) are incomplete and ambiguous

• Designs (D..) are incomplete and ambiguous

• Testing is possible only when realizations (Z..) are ready

• Correcting errors in realizations is costly and time-consuming
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Model-based engineering
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model simulation

model verification

• Simulation allows early detection of presence of
model/interface errors

• Verification allows proof of absence of model errors with
respect to properties

• Controller synthesis allows generation of models that satisfy
requirements by definition
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Model-based engineering
Hybrid models
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The combination of M1 and M2 often leads to hybrid models, e.g:

• M1 is a discrete-event model of a supervisory control system

• M2 is continuous-time (or hybrid) model of the controlled
physical system
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Model-based engineering
Hybrid models

Hybrid models are composed of:

• Continuous-time models (DAEs: differential algebraic
equations), including switched or switching sets of DAEs

• Discrete-time models (e.g. sampled systems)

• Discrete-event models (timed automata, process algebra), e.g.
execution of a sequence of processing steps in a machine

Embedded system models can be composed of any combination of
the models described above.
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Model-based engineering
Hardware-in-the-loop simulation
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• Hardware-in-the-loop simulation allows early detection of the
presence of realization errors
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Model-based engineering
Results
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• Fewer errors in realizations (Q ↑)
• Enabler for automatic code generation (Q ↑, T ↓)
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Language requirements for model based engineering

• Formal compositional semantics

• Concurrent

• Executable

• Modular and hierarchical

• Scalable

• Easy to use

• Stochastic

• Discrete-event, continuous-time and hybrid
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Dynamics and control world view

• Predominantly continuous-time system

• Modeled by means of DAEs (differential algebraic equations),
or by means of a set of trajectories

• Hybrid phenomena modeled by means of discontinuous
functions and/or switched equations, possibly using extended
solution concepts (Filippov, Utkin) leading to sliding modes

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

DAE model of a diode
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Computer science world view

• Predominantly discrete-event system

• Modeled by means of (timed/hybrid) automaton, process
algebra, Petri net, data flow languages, etc.

• Evolution of a hybrid system: sequence of time transitions and
action transitions

• Discontinuities are represented by actions

i = 0
v ≤ 0

v = 0
i ≥ 0

Automaton model of a diode
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Simulation languages

• Ease of modeling =⇒ complex languages

• Verification not an issue, no formal semantics: (no
verification)

• Languages specialize either in the discrete-event (DE) domain
or in the continuous-time (CT) domain

• Hybrid languages usually DE+ (E.g. Siman, Simple++) or
CT+ (E.g. Simulink, Modelica, EcosimPro)
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Verification formalisms

• Ease of formal analysis =⇒ small languages with formal
semantics

• Ease of modeling not an issue: cumbersome for modeling and
simulation
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Overview of the Chi language (1)

• Suited to:
• simulation
• verification
• code generation

• Integrates:
• discrete-event modeling (CS world view: automata, process

algebra)
• continuous-time modeling, (DC world view: switched

differential algebraic equations)
• discrete-time modeling (DC world view: sampled systems)

• Formal compositional semantics

• Consistent equation semantics of Chi ensures that equations
are always consistent, comparable to invariants of hybrid
automata
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Overview of the Chi language (2)

• Is a process algebra defined by means of:
• atomic statements, e.g. assignment (x := 2), DAE

(ẋ = −x + 1)
• an orthogonal set of operators, e.g. sequential comp. (;) and

parallel comp. (‖)
that can be freely combined.

• Core language small. Ease of use due to many syntactical
extensions (all formally defined).

• Modular and hierarchical and scalable by means of process
definition and process instantiation (reuse).

• Stochastic: definition of distributions and sampling.
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The Chi language definition (1)

A Chi model is of the following form:

model M(parameter declarations) =
|[ channel and variable declarations
:: p
]|

where p represents a process term (statement)
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The Chi language definition (2)

Process term Meaning
p ::= skip internal action

| x := e assignment
| a ! e sending
| a ? x receiving
| delay e delay statement
| inv u invariant (equations)
| X recursion variable
| b -> p guard operator
| p ; p sequential composition
| p || p parallel composition
| p | p alternative composition
| *p infinite repetition
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Controlled tank system (1)
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model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| *( V <= 2 -> n:= 1; V >= 10 -> n:= 0 )

]|
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Controlled tank system (2)

Equivalent specification using modes, as in automata

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10

, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| |[ mode noinflow =

V <= 2 -> n:= 1; inflow

, mode inflow =

V >= 10 -> n:= 0; noinflow

:: noinflow

]|

]|

noinflow inflow

V<=2 -> n:=1

V>=10 -> n:=0
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Distributor and Machines

D
in
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M
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proc D(chan in?, out1!, out2!: nat) =

|[ var x: nat

:: *( in?x; ( out1!x | out2!x ) )

]|

proc M(chan in?: nat, val t: real) =

|[ var x: nat

:: *( in?x; delay t )

]|

proc DMM2(chan in?: nat) =

|[ chan a,b: nat

:: D(in,a,b) || M(a,4) || M(b,5)

]|

D
in

M

M

a

a

proc D(chan in?, out!: nat) =

|[ var x: nat

:: *( in?x; out!x )

]|

proc DMM2(chan in?: nat) =

|[ chan a: nat

:: D(in,a) || M(a,4) || M(a,5)

]|
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Assembler

A

in1

in2

out

proc A( chan in1?, in2?: nat

, out!: (nat,nat)

, val t: real

) =

|[ var x,y: nat

:: *( ( in1?x || in2?y )

; delay t

; out!(x,y)

)

]|
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Tools for Chi

simulation

• Stand-alone symbolic simulator for hybrid and
timed Chi (Python)

• S-function block hybrid Chi simulator for
co-simulation in Matlab/Simulink

• Stand-alone simulator for timed Chi (C)

verification

• Translation of timed Chi to UPPAAL
• Translation of timed Chi to mCRL
• Translation of timed Chi to Promela/Spin
• Translation of hybrid Chi to PHAVer
• Prototype state space generator

real-time control

• Stand-alone Linux implementation
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Conclusions

Chi language suited to model based engineering of dynamical
(embedded) systems

• Concurrent process algebra allowing free combinations of
statements and operators

• Integrates concepts from the dynamics and control theory
with concepts from computer science

• Formal compositional semantics

• Integrates ease of modeling, simulation and verification

• Scalable: allows modular and hierarchical composition
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