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PREFACE

Dear Participants,

It is our great pleasure to welcome you in Freising — Weihenstephan for the 7th International
Conference on Simulation and Modelling in the Food and Bioprocess Industry.

More than a century of tradition and experience have made the Centre of Life and Food
Sciences Weihenstephan of the Technische Universitat Minchen unique in the world. At
Weihenstephan interdisciplinary networking amongst all the life science departments
enables the exploration of the entire life cycle of foodstuffs and raw materials. The Centre of
Life and Food Sciences Weihenstephan is the largest faculty of the Technische Universitat
Minchen and enjoys a global recognition in this area.

The Fraunhofer Institute for Process Engineering and Packaging (IVV), which is also located
in Freising, complements this extraordinary research infrastructure. Its competent and
professional organization carries out contract research and development work for the
industry.

At both these research locations, mathematical modelling and simulation plays an important
role for the optimization and management in the food and bio-processing area.

Thus we see FOODSIM2012 as a platform to exchange ideas and modelling techniques and
as an opportunity to expand the network for researchers, food experts and industrial users in
the field of simulation and modelling in the Food and Bioprocess Industry.

We are looking forward to lively discussions and hope that this meeting will give you the
opportunity to build contacts for future co-operation.

Your local committee

Sven Franke
Chair of Food Packaging Technology
Technische Universitat Minchen, Freising, Germany

Prof. Dr. Horst-Christian Langowski

Chair of Food Packaging Technology

Technische Universitat Minchen, Freising, Germany

and

Fraunhofer Institute for Process Engineering and Packaging (1VV)
Freising, Germany
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DESIGN OF DYNAMIC EXPERIMENTS FOR DISCRIMINATION BETWEEN
MODELS FOR MICROBIAL GROWTH KINETICS AS A FUNCTION OF
TEMPERATURE.

I. Stamati, F. Logist, E. Van Derlinden and J. Van Impe

BioTeC & OPTEC - Chemical and Biochemical Process Technology and Control,
Department of Chemical Engineering, KU Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium
email: [ioanna.stamati,filip.logist,eva.vanderlinden, jan.vanimpe]@cit.kuleuven.be

KEYWORDS
optimization, dynamic modelling, parameter identifica-
tion, nonlinear, agriculture

ABSTRACT

In the field of predictive microbiology, mathematical
models play an important role for describing the micro-
bial growth, survival and inactivation. Often different
models are available for describing the microbial dynam-
ics in a similar way. However, the model that describes
the system in the best way is desired. Optimal experi-
ment design for model discrimination (OED-MD) is an
efficient tool for discriminating among rival models.

In this work the OED-MD method proposed by Schwaab
et al. (2008) and Donckels et al. (2010) will be used
for discriminating among dynamic models of microbial
growth rate as a function of temperature. This method
provides experiments with an increased discriminatory
potential and better estimates of the uncertainties.

Results from a simulation study indicate that it is possi-
ble to validate the case that one of the proposed models
is more accurate for describing the temperature effect
on the microbial growth rate.

INTRODUCTION

The need to find the best model arises when different
models are proposed for the same process. For describ-
ing the influence of temperature on the microbial growth
rate there exist several models in predictive microbiol-
ogy. Two of these models are the CTMI (Cardinal Tem-
perature Model with Inflection (Rosso et al. 1993)) and
the aCTMI (adapted CTMI (Le Marc et al. 2002)). Up
to now, it is assumed that the CTMI is valid for all
strains. Divergence from this model only has been ob-
served for Listeria (Le Marc et al. 2002) and E. coli K12
(Van Derlinden et al. 2012).

The idea is to use experimental design to discriminate
between the available models. New experimental con-
ditions will be designed that maximize the difference
between the outputs of the different models. There ex-

ist in literature several criteria which take this difference
into account. In the current work the method proposed
by Schwaab et al. (2008) and Donckels et al. (2010)
will be used. The criterion includes the posterior co-
variance matrix of estimated model parameters. This
approach provides conditions for an increased discrimi-
natory prospective in combination with better estimates
of the model parameter values.

The paper is structured as follows. In the first part the
case study with the two proposed models are presented.
In the second part the methodology both in theory and
practice is outlined. Finally in the last part the results
from the discrimination between the CTMI and aCTMI
are presented followed by the conclusions.

CASE STUDY

The growth model of the cell density as a function of
time of Baranyi and Roberts (1994) is used:

d?;it) _ Q(Qt)(tl = iman (T(2)) - [1 = exD(n(t) = )]
dQ(t)

7 = Mmaz(T(t)) ’ Q(t)

with n(t) [In(CFU/mL)] the cell density at time ¢ [h],
Nmaz [IN(CFU/mL)] the maximum value for n(t) and
Hmaz [1/h] the maximum specific growth rate. Q(t) []
is a measure for a physiological state of the cells. For this
work Q(t) is excluded (see Van Derlinden et al. (2010)
for details). The microbial growth rate as a function of
temperature can be described by CTMI and aCTMI.
The CTMI model is described by:

Hmaz = 7 * Hopt (1)

with
0 T <TminorT > Thaz
Y= (T - Tmzn)z(T - Tmam)
(Topt - Tmln)('yA - IYB)

Tmin <T< Tma:c

YA = (Topt - TmivL)(T - Topt)
B = (Topt - Tmam)(Topt + Tmin - QT)



The parameters included in this model are the three
cardinal temperatures T}, [°C], Topt[°C] and Tqz[°C]
(i.e., the minimum, optimum and maximum tempera-
ture for growth, respectively) and fiop[1/h] (the maxi-
mum specific growth rate at Top¢.

The aCTMI model is described in a similar way as the
CTMI but with a different v function:

T S Tmzn or T Z Tmaw

Thin <T <Tec

) G TC<T<Tmaz

Yo = <Topt - Tl)(T - Topt)
YD = (Topt - Tma,x)(Topt +T7 — QT)

YE = (TOPt - Tl)(TC - Topt)
TP = (Tozzt - Tmaz)(Topt +Ty —2T,)

_ < T — Tin >2
e Tc - Tmzn

(3)
Apart from the previous parameters the adapted model
is defined also by T.[°C] the so-called change tempera-
ture and 77[°C] the intersection point between the first
linear part and the temperature axis. In Figure 1 the
/Imaz versus the temperature is displayed for the two

models, and their difference in the region of T;,;, can
be seen.

M1/ Ry

VHmaz (v

TN

min Tempszraturs °C Tonax

rCTMY
FYHIT

Figure 1: \/limas as a function of temperature for the
CTMI and aCTMI models

METHODOLOGY

The procedure followed for OED-MD is illustrated in
Figure 2 and the different steps are explained.

Preliminary experiment

An initial experiment is required in order to have an
estimate of the unknown parameters. This experiment
is chosen arbitrarily and will provide measurements for
the initial parameter values.

om—————————————————

Preliminary
experiment
— 1 :
Parameter Designed
estimation experiment

l I

-
Design experiment

-

Model adequacy test for
model discrimination
Best model

Figure 2: Steps for OED-MD (Donckels et al. 2010).

Parameter estimation

Given an input (preliminary or designed) and the cor-
responding experimental data parameters can be esti-
mated. Parameters are selected such that the model pre-
dictions y(p, t;) fit the measurements y,,,(t;), at times
t;, as accurately as possible despite the presence of mea-
surement errors. The most common assumption about
the probability distribution of the measurement errors
is that they are additive, independent and identically
distributed according to a Gaussian distribution. These
assumptions typically lead to a weighted sum of squares
objective (WSSE) (Walter et al. 1997)

J(p) = Z:L;1(Y(p»t1) - yexp(ti))T Q (y(p?tl) - yez(p()tl))
4
with n,, the number of parameters and n; the number of
measurements. The weighting matriz Q is typically se-
lected as the inverse of the measurement error variance-
covariance matrix.

Model adequacy test

To be able to discriminate between the two models there
should be a proof that one model is unable to fit accu-
rately to the data, whereas the other model is able. The
use of the y2-test can prove a lack of fit (Chen et al.
2003). Since the measurements are assumed to follow a
normal distribution with zero mean and known covari-
ance o2 , the WSSE function follows a y? distribution
with n — n, degrees of freedom. This allows the use
of the x? adequacy test (Donckels et al. 2009). If the
WSSE value is above the X, _, value (n. = number
of experiment points, n,, = the number of unknown pa-
rameters) then there is a lack of fit.

Experiment design for model discrimination

Optimal experiment design for dynamic systems leads
to a particular class of optimal control problems:

min J (5)



subject to:

o~ ey teln] (©)
0 = bi(x(0).p) @
0 2 c,(x(t),u(t) p.1) ©

Here, x are the state variables, u the time-varying con-
trol inputs and p the model parameters. The vector f
represents the dynamic system equations (on the inter-
val t € [0, ¢;]) with initial conditions given by the vector
b.. The vector c, indicates path inequality constraints
on the states, controls and parameters. y are the mea-
sured outputs, which are typically a subset of the state
variables x.

The objective function J for model discrimination is typ-
ically a discrimination criterion that maximizes the dif-
ference between the model outputs. In the current work
the criterion for discriminating between model m and n,
for experiment &, 4+1 = (un,+1(t),t,p) (ne : number of
available experiments) is

Dm,n(&ne—ﬁ-l) = dz;L,n(é.ne-‘rl)vm?n(Sne-f'l)d"h"(g"e"rl() )
9

with:

dm,n(gne—i-l) ZYWL(gne—i-l) y( e+1)

Vm7n(§ne+1) =2V+V, ( Ne ) (fne—&-l)
m(fneJrl) = Bm(gne+1)v (§n6+1) %(gnfrl)
m(fne-i-l) = [ (gne 1>V (é-ne+1>+

pn (Enc)]

Here y,(§n.+1) is the output for model m (similarly
for model n), V, 1, (§n.+1) is the posterior covariance
matriz of the differences between model predictions, V
is the covariance matriz of the experimental deviations
and V,,(&,.+1) is the covariance matriz of model pre-
diction variations calculated from model m (and sim-
ilar for model n). The model uncertainty includes
the uncertainty on the model predictions and on the
measurements (Donckels et al. 2009). By, (§n.4+1) is
the sensitivity matrix that contains the first derivatives
of model m responses with respect to its parameters

(3ym(6§;e+1)>'

Vp.m(&n,+1) is the posterior covariance matriz of model
parameters. It can be seen that V, ,,, consists two parts,
i.e., the covariance matrix of the new designed experi-
ment with input u,_4+1(¢) and the current covariance
matrix of the parameter estimates. The covariance ma-
trix of the estimated parameters is approximated by the
Fisher information matrix (FIM) (Walter et al. 1997).

The primary objective is the increase of the discrimina-
tion power but a decrease of the parameter variances is
obtained as well, with the use of the posterior covariance
matrix of parameter estimates (Schwaab et al. 2008).

Best model

After the model adequacy test it can be checked whether
only one model is able to accurately describe the data.
Otherwise the loop has to be entered again and a new
discriminatory experiment has to be designed.

IMPLEMENTATION

The aCTMI model coincides the CTMI model if pa-
rameters T.[°C] and T3[°C] are well chosen. Whereas
the CTMI model does not always coincide the aCTMI
model. This will be verified with the use of model dis-
crimination techniques. Assuming aCTMI is the cor-
rect model, in silico data have been created and used as
measurement data. The discrimination procedure as ex-
plained previously has been applied for this data. More
specifically the steps followed are:

i The preliminary experiment is performed in silico by
generating data from the aCTMI model and adding
an error with known variance.

ii The generated data is used for estimating the param-
eters of both models CTMI and aCTMI.

iii A discriminatory experiment is designed. The de-
signed inputs are applied and the data are obtained
(again in silico).

iv Using all the data the parameters for both models
are re-estimated. The x2-test is applied.

v According to the test results a model is selected or a
new discriminatory experiment is designed.

Input profile

Temperature ['C]

t At

Time [h]

Figure 3: Representation of the parameterized temper-
ature profile (Van Derlinden et al. 2010).

The input profile (Figure 3) is parametrized with four
degrees of freedom: 77 [°C] the initial temperature, ¢,
[h] the time at which the increase or decrease in tem-
perature starts, AT/At [°C/h] the rate of tempera-
ture change and At [h] the duration of the temperature
change (Van Derlinden et al. 2010).



This input profile is optimized for the discrimination
experiment. The temperature is allowed to be in the
region of [0,45]°C, the total time is 38 hours with a
sampling time of 1 hour.

Measurement data and parameters

The parameters used for generating the pseudo-
measurements are fi,,; = 2.41 1/h, Thmin =
5.67°C, T, = 23°C and T3 = 12.3°C (Van Derlinden
et al. 2012). The error added to the output data
(for generating the pseudo-measurements) has a vari-
ance 02 = (3.27-1072)2. The two models differ in the
temperature region below T, therefore for this work
the temperature parameters T,,; and Thq, are identi-
cal for both models and based on previous estimations
(Van Derlinden et al. (2012)). For the CTMI model, two
parameters are unknown (i.e., popt and Tyip), Whereas
four parameters have to be identified for the aCTMI
(i.e., popt, Tmin, Tc and T7).

Algorithms

The parameter estimation is performed with the
1sqnonlin matlab function. This function solves a least
squares problem using the trust-region-reflective algo-
rithm. The optimal experiment design is solved with
the patternsearch matlab function from the global opti-
mization toolbox. This function finds the minimum of
the objective function using a pattern search algorithm.

RESULTS

The preliminary experiment (with input v = [Ty =
13°C, ts = 10 h, AT/At = 0.5°C/h, At = 25°C]| Fig-
ure 4) is performed in silico generating data from the
aCTMI model. The obtained data are used for param-
eter estimation, the resulting estimated parameters can
be found in Table 1. The pseudo-measurements together
with the model outputs using the estimated parameters
are displayed in Figure 5. The model adequacy test is
performed and both models are able to fit the data. The
next step is the design of the discriminatory experiment
based on the method explained in the previous section.
The discrimination value obtained is D = 2616.3 for
input w = [Ty = 40.87°C, t; = 4.12h, AT/At =
—5°C/h, At =6.48°C].

An experiment using the new designed input (first dis-
crimination input in Figure 4) is performed again in
silico. The new obtained data together with the pre-
vious data are used for re-estimating the parameters.
The parameter values can be seen in Table 1 whereas
the outputs of the two models (using the new found pa-
rameters) and the pseudo-measurements using both the
preliminary and the first designed inputs are displayed
in Figure 6.

The model adequacy test proves that the aCTMI is the
best model (see Table 2). And this because the WSSE

IS
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Figure 4: Temperature profile for every of the three ex-
periments.
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Figure 5: CTMI and aCTMI model outputs after the
estimation together with the pseudo-measurements for
the preliminary experiment.

value of the CTMI model is above the X?an and thus
indicates that the CTMI can not describe the data accu-
rately. Whereas the WSSE value of the aCTMI model
is below the X%—np and indicates a good fit. To increase
the discrimination an additional experiment is designed
and performed.

Table 1: Parameter values

model popt|1/h]  Tmin[°C]  T.[°C] T:i[°C]
original aCTMI 241 5.67 23 12.3

preliminary experiment

CTMI 1.71 6.81

aCTMI 2.12 6.10 21.79  10.15
first designed experiment

CTMI 2.36 9.27

aCTMI 241 5.99 22.66  11.94

second designed experiment
CTMI 2.27 9.47
aCTMI 2.40 5.81 22.66  12.05

The second discrimination experiment gives a discrim-
ination value D = 892.85 for input v = [I7 =
40.06°C, ts = 0 h, AT/At = —5°C/h, At = 3.48°C]
(see Figure 4).

Again the new experimental data together with the ones
from the two previous experiments are used for estimat-
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Figure 6: CTMI and aCTMI model outputs after the
new estimation together with the pseudo-measurements
using the preliminary (0) and first designed (1) inputs.

ing the unknown parameters. In Table 1 it can be seen
that the parameters are closer to the original. This is ac-
complished through the use of the posterior covariance
matrix in the discrimination (see Equation (9)).

After the second discrimination experiment it is observ-
able that aCTMI is the best model (see Table 2 and
Figure 7). Since the experiments are in silico and it
was known beforehand that aCTMI is the correct model
these results confirm the possibility of OED-MD meth-
ods do discriminate between the two models.

Table 2: Model adequacy test results

model |  WSSE Xo—n,
After preliminary experiment
CTMI 40.05 52.19
aCTMI 36.81 49.80
After first discrimination experiment
CTMI 300.58 97.35
aCTMI 74.45 95.08
After second discrimination experiment
CTMI 1100 141.03
aCTMI 103.26 138.81
CONCLUSIONS

Between the two models CTMI and aCTMI the ques-
tion of the best model arises. Here, through OED-MD
the ability to discriminate between the two models is
studied and evaluated. The results from the simula-
tion study show that if the aCTMI model can describe
more accurately the region around T,,;,, it is possible
through model discrimination to confirm it. In future
research, designed experiments for discrimination will
be performed in a bioreactor.
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ABSTRACT

In this contribution, molecular dynamics simulations
are presented as a valuable tool to predict phase-
transition diagrams of saturated as well as unsaturated
fats. Choosing the Gibbs-Duhem integration with tem-
perature step size as little as 3 K simulations were per-
formed for the three main components of cocoa but-
ter: 1,3-distearoyl-2-oleoylglycerol (SOS), 1-palmitoyl-
2-oleoyl-3-stearoylglycerol (POS) and 1,3-dipalmitoyl-2-
oleoylglycerol (POP). Such high-resolution results sug-
gest a non-linear, constantly increasing slope towards
higher pressures. The proposed method is easily trans-
ferable to fats of various chain lengths and double bonds.
On modern desktop computers the presented results can
be computed within the time scale of hours, making
the technique feasible for standard use. It may thus
be an important tool to expand the knowledge on the
behaviour of the homologous series of saturated and un-
saturated fats, of interest for high-pressure processing
of food.

INTRODUCTION

High-pressure treatment of food is becoming increas-
ingly important in the food industry. It provides an
effective method to extend the shelf-life with less impact
on texture when compared with thermal processing
(Torres and Velazquez 2005). For a proper design of
high-pressure treatment of food, detailed knowledge of
their phase behavior is necessary. However, for many
food systems there is still a lack of comprehensive data
of pressure-dependent thermodynamic properties.

While experimental (Ferstl et al. 2010; 2011) deter-
mination of phase behaviour gives reliable and exact
results, it is often time-consuming and requires special
equipment. This is one reason why experimental
data is still scarce and can be cumbersome to obtain.
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Thermodynamic model predictions were published
previously (Delgado et al. 2008), though the approach
demands for in-situ measurement techniques for proper
validation.

Molecular dynamics (MD) simulations are a promising
alternative. They provide a predictive tool to explore
the phase behavior of fats based on the structure of
the molecules. By integrating Newton’s equation of
motion for a set of molecules in a simulation box, it is
possible to obtain macroscopic properties like density
or diffusion coefficients via thermodynamic analysis
of the molecule’s trajectories (Allen and Tildesley 1989).

Pioneering molecular simulations of fats focused on
the energies of different conformations (Yan et al.
1994). Further force-field development in the 1990s
(Chandrasekhar and van Gunsteren 2002), together
with increasing computational resources, led to in-
creasingly predictive and physically realistic models.
The calculations presented here are based on the
NERD force-field from Sum et al. (2003), which
has been adopted previously (Hsu and Violi 2009)
and thus provides a well-validated (Sum et al. 2003,
Hsu and Violi 2009, Greiner et al. 2012) approach for
temperature- as well as pressure-dependent calculations.

Our contribution presents MD simulation results,
obtained from few-hour timescale calculations with
the GROMACS code (Van der Spoel et al. 2005,
Hess et al. 2008). Our previously published results
(Greiner et al. 2012) focused on fats built from single
components of saturated fatty acids only.  Many
food products, however, largely contain unsaturated
fatty acids. For this reason we present the phase
transition diagrams for 1,3-distearoyl-2-oleoylglycerol
(SOS), 1-palmitoyl-2-oleoyl-3-stearoylglycerol (POS)
and 1,3-dipalmitoyl-2-oleoylglycerol (POP), the three
main components of cocoa butter - the base material for
chocolate. Additionally, a higher degree of automation
in the code allowed us to produce more accurate results
compared to our previous work.



METHODS

For single component fats there are currently only few
phase-transition diagrams available (Lee et al. 2010).
To explore the solid-liquid co-existence curve, which is
of a particular interest in understanding the interplay
between pressure and temperature during processing,
we employ a Gibbs-Duhem integration scheme (Kofke
1993b;a). After calculating the slope of the co-existence
line for known combinations of temperatures and pres-
sures, the temperature is slightly increased and the pres-
sure is adjusted using the Clausius-Clapeyron equation:

X )
dT  TAV’
where 3—{,1 gives the slope in a pT phase transition di-

agram, AH; is the molar enthalpy of fusion, T' is the
temperature and AV is the difference in molar volume
between the crystal and liquid state, calculated as (Lee
et al. 2010):

AV = ML (2)

PsP1

with M as the molar mass, ps as the mass density for
the solid and p; for the liquid phase. A schematic rep-
resentation of the solid and liquid structures of the sim-
ulation cell are given in figure 1. Hence, knowing the
value of AV at a certain T and p, such as the melting
temperature at ambient pressure, an estimate for a lin-
ear portion of the solid-liquid co-existence curve can be
made.

SIMULATION DETAILS

The Gromacs code (version 4.5.4) was used for all sim-
ulations. The liquid as well as the solid simulation
boxes contained 160 molecules and were initially pre-
equilibrated over 50000 integration steps with a time-
step of 2 fs, ensuring constant potential energies. All
simulations were performed in an NPT ensemble us-
ing the Parrinello-Rahman barostat, as well as the
Nosé-Hoover temperature coupling (Allen and Tildes-
ley 1989). Periodic boundary conditions were applied in
all directions and a cut-off of 1.1 nm, with the potential
smoothly decreasing to zero at 1.4 nm, was used. Long-
range interactions were calculated with the particle-
mesh Ewald method (Allen and Tildesley 1989).

RESULTS

Results published previously (Greiner et al. 2012) show
the phase co-existence curve for Trilaurin (LLL) and
tripalmitin (PPP) along with experimental results for
triarachidin (AAA) (Masberg 1999), as depicted in
figure 2. Given the structural similarity between PPP
and AAA, their similar slopes indicate good agreement
between our predicted phase co-existence curves and
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Figure 1: Representation of a liquid (A) and solid (B)
simulation box with periodic boundaries containing 160
fat molecules on the example of POS.

%
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Figure 2: Plots of the phase co-existence lines for satu-
rated fats with references printed as dotted lines.
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Figure 3: Plots of the slope for unsaturated fats in the predicted phase co-existence diagrams with reference printed

as dotted line.

experimental values. The co-existence line for LLL
has been estimated by using a single value for AV
taken from Lee et al. (Lee et al. 2010). The smaller
slope for LLL, when compared with PPP, indicates a
larger volume change for smaller chains. As there is
a lack of experimental data for both phase transition
diagrams of fats and precise crystal coordinates, we
did not calculate further phase co-existence lines for
saturated fats. Nevertheless, the results suggest that
MD is capable of predicting phase transition diagrams
for saturated fats.

Very important for many food products, however, are
unsaturated fats. A double bond in the aliphatic chain
makes it kink at this very position (see figure 1B), thus
largely changing the physical properties of the product.
One example where unsaturated fatty acids play an im-
portant role is cocoa butter. Roughly 80% of the total
fat content comes from POP, POS and SOS. There, one
unsaturated oleic acid is attached to the central carbon
atom of the glycerol backbone, together with two satu-
rated fatty acids on the outer carbons.

For the implementation in GROMACS we have im-
proved the Gibbs-Duhem integration scheme based on
the Automated Gromacs Simulations-script by Marc
Offmann (URL: https://github.com/offmarc/AGroS).
Simulations were run fully automated allowing multiple
calculations with small integration steps of 3 K.

The phase co-existence lines estimated for POP, POS
and SOS are shown in figure 3. The trends for POP,
POS and SOS are in reasonable agreement with the
reference values for cocoa butter. Given their quantita-
tively similar molecular structure and liquid behavior,
as reported in the literature (Sum et al. 2003), it is
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not surprising that the phase co-existence lines show
similar slopes. Nevertheless, there seems to be a trend
to steeper slopes for components melting at lower tem-
peratures. Due to the small range of pressures explored
in experiment, often linear co-existence lines are used
to correlate the data. While this simplifies equations
for continuum models, the results presented suggest a
non-linear behavior when covering large pressure ranges.

A more detailed representation of the slope of the co-
existence line for each component is given in figure 4.
Results show the described trend of higher slopes to-
wards combinations of higher temperatures and pres-
sures, whereas the slope for cocoa butter, as taken from
literature, is constant. Ferstl et al. (Ferstl et al. 2010)
experimentally determined the phase transition diagram
for Triolein and applied a polynomial function to accu-
rately fit their results in a range of 40 K and 4 kbar. For
minor changes in the pressure the increasing slope may
not be of practical relevance, however in high-pressure
treatment, applied pressures can reach values in excess
of 15 kbar (Delgado et al. 2008).

CONCLUSION AND OUTLOOK

MD simulations may play an important role in predict-
ing phase transition diagrams. Previously published
models (Delgado et al. 2008) show the validity of linear
co-existence line estimations for edible fats for pressures
as high as 2 kbar. The constant increase of the slope
in the pT-diagram would lead to a significant off-set
towards higher pressures.

The aim of future calculations will be to explore the
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co-existence lines in more detail to further verify the
qualitative and quantitative behavior of the given fats,
such as comparing the chemical potential between the
two phases after every integration step.
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ABSTRACT

The objective of this work is to model the flocculation
process as encountered in many food- and biotechno-
logical applications concerning solid-liquid separation.
A population balance framework is used to couple the
shear induced aggregation and breakage processes. To
solve the population balance model efficiently, the model
equations were recasted in moment form, and a 9-th or-
der polynomial closure rule to approximate the miss-
ing fractal moments was applied as proposed by Som-
mer et al. (2006). A parameter study was peformed
using parameters for yeast flocculation as found in liter-
ature. The simulation results are qualitatively in agree-
ment with experimental findings. Furthermore, we show
how this model may be used to increase flocculation ef-
ficiency by applying a time-dependent shear rate.

INTRODUCTION

Flocculation often occurs in food- and biotechnologi-
cal applications when dealing with colloidal dispersions
(such as biological cells, enzyme granules, or fat glob-
ules). In many of these processes, the flocculation is
used to facilitate solid-liquid separation. For exam-
ple, yeast cells are supposed to flocculate towards the
end of the fermentation process to improve the filtrabil-
ity. As has been shown with bottom-fermenting yeast
strains (e.g. Annemueller et al. (2005)), the sedimenta-
tion speed increases with increasing floc sizes. However,
the calculations performed in those studies assumed a
statistical mean floc size. To improve the prediction of
the sedimentation behavior, those calculations should be
performed using a distribution of floc sizes. Therefore,
simulations are needed to predict floc size distributions
in dependence of their agitation schedule.

One common practice to increase flocculation is agitat-
ing the dispersions. The agitation enables shear induced
collisions between the particles which are essential for
flocs to grow. However, flocs may also break, especially
when they increase in size. Thus, flocculation is an inter-
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play between aggregation and breakage processes, from
which a steady state floc size distribution arises (Han
et al. 2003).

A simulation technique allowing to superpose the two
opposing processes is the population balance method,
where partial differential equations are solved numeri-
cally. This technique has already been applied for simu-
lating flocculation of various materials. However, only a
few studies have been dealing with biological cells (e.g.
Han et al. (2003), van Hamersveld et al. (1998)). Short
computational times are necessary when combining the
population balance simulations with computational fluid
dynamic simulations in order to reproduce the agitation
of cells in a complex process in detail. A popular nu-
merical method to reduce computation time is to recast
the population balance equations in the moment form.
This work adopts the population balance model and the
numerical method as described by Sommer et al. (2006).
Their model has been succesfully applied to describe
flocculation of nanoparticles in stirred media mills. We
will apply this model to describe the flocculation be-
havior of yeast cells exposed to shear flow and perform
a model parameter study where we use typical model
parameters accounting for yeast cells as found in liter-
ature. In addition, we will show how such calculations
may be used to optimize the shear rate settings of real
industrial flocculation processes.

POPULATION BALANCE MODEL IN MO-
MENT FORM

The population balance equations taking aggregation
and breakage into account take the following form (Som-
mer et al. 2006):

Ano) L[ o i
p —Q/ﬁ(v,v—v)n(v)n(v—v)dv
0




where n(v,t) is the time-dependent number density dis-
tribution with the floc volume v as a characterizing vari-
able. [ is the aggregation rate kernel, I" the breakage
rate, and b the fragment distribution function. We use
the volume v as the characterizing variable since the to-
tal volume of all flocs remains constant which allows a
simple consistency check.

The first two terms of the right hand side of equation
(1) account for the aggregation process. When a floc of
size v collides with a floc of size v — v/, they form a new
floc of size v. Therefore, the first term is the birth term
accounting for the formation of the new floc, whereas
the second term is the sink term accounting for the loss
of the smaller flocs.

The aggregation rate kernel is a function of the floc vol-
umes since larger flocs are more likely to collide in shear
flow than smaller flocs. The turbulent shear-induced
aggregation rate kernel has then the extended form of
the Saffman-Turner kernel (Saffman and Turner 1956)
as given by Sommer et al. (2006):

0.31
e G(v1/3 +v'1/3)3,

Blv.v/) = 2)
where W is the stability factor and G the shear rate.
The last two terms of the right hand side of equation
(1) account for the breakage process where a floc of size
v’ breaks into two smaller flocs of size v and v —v’. The
third term is the sink term and the fourth term is the
birth term. Both terms depend on the breakage rate T,

given by:
['(v) = AGYv", (3)

where A’ is a constant, pu a constant exponent, and y
a constant inversely proportional to the floc strength
(Sommer et al. 2006).

The fragment distribution function b(v,v’) is the num-
ber density of resulting particles with volume v when a
particle with volume v’ breaks. In this work, a general-
ized form of Hill and Ng’s power-law breakage distribu-
tion is applied (Sommer et al. 2006):

o)t e+ D=1
v'Petr=lelle 4+ (¢4 1)(p — 2)]! @
where p is the number of fragments per breakage event
and ¢ determines the shape of the daughter distribution.
By using the substitution z = v/v’, equation (4) can be
written in a self-similar form which now depends on the
self similar distribution function ®(z):

_ P = 2Ol g (o4 1)(p— 1)
N v'elle+ (e + 1) (p — 2)]!

B pvc(vl
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b(v,v")

The k-th moment My, = [ v*n(v)dv of the distribution
n(v) is normalized as follows:

(Mgo)*
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where My is the number concentration and M; the vol-
ume concentration of the system. MgG° is part of the
0-th moment at steady state and can be calculated from

M@@:<w>?

0.31G psl—n
w Ml

(7)

By multiplying equation (1) with v* and taking the in-
tegral on both sides, the population balance equations
can be expressed in the moment form:
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with k = 1,...,9 and by = [, 2*®(2)dz being the k-th
moment of the self similar distribution function ®(z). In
particular, the volume is conserved, i.e. 4 (In(my)) = 0.
In order to solve equation (8) numerically, a closure rule
has to be applied to approximate the missing fractal
moments. Frenklach and Harris (1987) proposed a 9th
order polynomial closure rule to calculate the missing
moments m; as follows:

In(m;) = 1In(v;) — (j — 1) In(mo), (9)

- )
where v; = m;m}™" and is calculated from

9

In(v;) =Y fi(G* =)

k=2

(10)
The coefficient fj of the k-th order polynomial are found
by solving

A In(y) = f,

f (11)
where A is a matrix with elements a,,; = mPF. The
moment method has the advantage of a very moderate
computational effort.

SIMULATION DETAILS

The ordinary differential equations for the moments are
solved numerically using the MATLAB solver ode23tb
with a relative error tolerance of 1073 and an absolute
error of 107¢. In each time step, the closure rule (equa-
tions (9) - (11)) is applied to find the missing fractal mo-
ments. The implementation of this model was validated
carefully with the results from Sommer et al. (2006).

In our simulation, we use realistic model parameters for
yeast as can be found in literature (Han et al. 2003).



The inital moments were calculated from a monodis-
persed suspension with spherical yeast cells with a di-
ameter of dy = 8- 10~*cem and with a cell number
of ¢, = 10°4#/ml. The other model parameters were
chosen as follows: p = 2 and ¢ = 30 (for binary
and uniform breakage), y = 1.6, p = 1/3, W = 1,
A’ =0.0047em~1s¥~1, and G = 100s~ 1.

RESULTS AND DISCUSSION

time /s

Figure 1: Effect of shear rate on number mean floc size
(a), its variance (b), and volume mean floc size (c).

The simulations were performed with the set of model
parameters as described above. To perform a parame-
ter study, selected model parameters were varied: the
shear rate G accounting for the flow condition, the pri-
mary cell size dy, the initial number concentration of
cells ¢, the stability factor W, and the constant y ac-
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counting for cell-cell interactions. The sensitivity of
those parameters is studied in terms of the number mean
floc size in volume units Vi, = M;/M,, its variance
0%, = My/My — V3, and the volume mean floc size in
volume units Vi, = My /M.

In figure 1 the influence of the shear rate on those three
quantities is shown. With increasing shear rate, the
mean floc sizes as well as the variance of the distribution
decrease (though the variance is still rather small due
to the monodisperse initial distribution). This result is
expected since the aggregation kernel is proportional to
G whereas the breakage kernel is proportional to GY,
with y > 1. Therefore, with increasing shear rate the
breakage process becomes dominant compared to the
aggregation process.
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Figure 2: Effect of initial cell diameter (a) and cell num-
ber concentration (b) on volume mean floc size.

The influences of the initial cell size and number con-
centration on the volume mean floc size are shown in
figure 2. With increasing cell number or sizes, the col-
lision frequency increases leading to an increase in floc
volumes.

Until now, a collision efficiency of unity was assumed,
i.e. all cell collisions are effectively forming a new, larger
floc. However, this is only the case in the absence of re-
pulsive cell-cell interactions. In the case of repulsive
interactions, the collision probability may be reduced
by increasing the stability factor W. With an increas-
ing stability factor, the breakage process becomes more
dominant and the number cell volume decreases (see fig-
ure 3). However, a floc consisting of a single cell cannot
break into smaller, undamaged cells. Therefore, when a



single cell gets damaged and lysis occurs, this breakage
differs from the breakage of flocs. Such an occurence
should be taken into account in future when modeling
the breakage of single cells.
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Figure 3: Effect of the stability factor (a) and floc
strength (b) on volume mean floc size.

The model parameter y can be seen as inversely propo-
tional to the floc strength. By increasing the floc
strength (i.e. decreasing y), breakage is inhibited and
the floc volume increases, as shown in figure 3.

Figure 1 clearly shows that the time to reach steady
state varies with shear rate (i.e. agitation speed). This
behavior may be exploited for a more efficient floc-
culation process design. Instead of using a constant
low shear rate, the fast aggregation behavior for higher
shear rates may be utilized for reducing flocculation time
scales. In figure 4 we have decreased the shear rate
whenever steady state is approached. The final shear
rate was G = 10 s~!. To compare, the mean volume floc
size for a constant shear rate with same magnitude was
added in this figure. An increase of floc size starts ear-
lier in the process using a time-dependent shear rate and
the final steady state was reached sooner. This example
shows that the flocculation process may be optimized
by designing shear rate trajectories.

CONCLUSION AND OUTLOOK

The population balance model proposed by Sommer
et al. (2006) in the context of milling nanoparticles was
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Figure 4: Decrease of flocculation time scale by using
time dependent (- -) instead of constant shear rate.

adopted for yeast cells. Realistic model parameters from
the literature for yeast cell systems have been used (Han
et al. 2003). A parameter study showed that this model
yields qualitatively to realistic results (see e.g. Wickra-
masinghe et al. (2002)). Therefore, the model may be
used to optimize the process with model parameters ob-
tained from experiments for a particular situation.
However, as van Hamersveld et al. (1998) discuss in de-
tail, some experimental studies using yeast cells have
found that the resulting floc size distribution is rather
bimodal due to the presence of single cells originating
from surface erosion. This fragmentation behavior was
not considered in the given model since a binary and
uniform breakage was assumed. Along with avoiding
the breakage of single cells, the fragmentation behavior
should be included in future models.
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ABSTRACT

We present an approach to a currently relevant
challenge in the food industry: The optimization
problem of developing a food matrix with maximum
salt taste perception and minimum total salt content.
A combination of different methodologies is
employed in order to identify those food properties,
which are most important for salt perception:
Laboratory experiments including an artificial
mastication machine, numerical simulations, and a
panel of human sensorial analysts. The correlations
between perceived salt taste and salt content, or salt
distribution in the food matrix show a promising
potential for the guided design of an optimized, salt
reduced food.

1. Introduction

Salt (NaCl) plays an important role in the human
nutrition, especially due to its sensorial and flavour
enhancing properties.

However, according to epidemiological, migration,
intervention, treatment, animal and genetic evidence
salt is the primary cause of raised blood pressure (He
et al., 2007).

Mean daily salt intake of the European population
ranges from approximately 8 — 11 g/day and is well in
excess of dietary needs (approximately 3 — 4 g
salt/day in adults) (EFSA, 2005). Recent EU
legislation allows products which have salt levels
below 0.3 % to be labelled as “low salt” and allow
claims in relation to sodium intake and heart health to
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be made (Commission of the European Communities,
2003).

Discretionary salt (added during cooking and at the
table) and naturally occurring sodium in unprocessed
foods combined, contribute to 10 — 15 % of total daily
intake (FSAI, 2005). The main source of salt in the
diet is processed foods (about 70-75 % of the total
intake) (James et al., 1987). As relatively moderate
restrictions in salt intake have the potential to reduce
average blood pressure, reducing salt in processed
meat products may substantially reduce the burden of
morbidity and mortality from cardiovascular diseases
at a population level.

Processed meat products as boiled or raw sausages
comprise one of the major sources of sodium in the
form of sodium chloride (salt). In those products the
salt is, besides its sensorial properties, necessary for
technological reasons. Particularly salt is added for
conservation, colour, texture, water binding and
protein solution. The technologically needed amount
is, however, much lower than the amount added
because of sensorial reasons. The levels of NaCl in
sausages is usually between 1.5 and 4%, the main part
of the salt is located in the water phase between the
protein gel structure shown in Figure 1
(Kretzschmann, 1996; Franzke, 1990; Gerhardt,
1994).

The overall aim is to reduce the salt content in
processed meat products as sausages significantly
(<20%) without affecting the sensorial properties.

State-of-the art approaches to reduce salt content via
the addition of salt substitutes or salt enhancers have
shown only moderate success and are partly not



accepted by the consumers due to the bitter off-
flavours induced by the salt substitutes.

Tests indicate that up to 90% of the salt in sausages is
swallowed “untasted”, that means that during
chewing the sausage the major part of the salt does
not dissolve in the saliva and diffuse to the tongue.
Other work showed that alternating salt-rich and salt-
poor layers inside a food matrix lead to an increased
salt perception compared with homogenously
distributed salt inside the food matrix (Noort, 2010).
There is a lack of knowledge regarding the
interactions of the food matrix and texture with the
salt release and perception while eating the food.

The approach of this work is to understand the
mechanisms of salt release during eating from a food
matrix (model food: sausage) to saliva, as well the
diffusion to the tongue, which then leads to salt
perception.

The knowledge of these mechanisms is expected to
contribute to an improved design of the food
(sausage) matrix to enhance salt release, availability
and consequently  perception during  food
consummation.

In order to design the work in an efficient and target-
oriented manner, the experimental design is
performed along three parallel directions: (i) human
sensorial analytics by a group of specifically trained
testing professionals, (ii) laboratory mouth model via
an artificial masticator setup, and (iii) numeric
simulation of the chewing process and the associated
salt release. The work reported here presents the first
phase of this project; accordingly we focus on the
development and correlation of the mouth model with
numeric simulation and sensorial tests. The remainder
of this article is organized as follows: part 2 describes
our approach of modelling salt perception and release
both via laboratory experiments and numerical
simulations. Results are presented for both methods
and compared with those obtained from a human
sensorial analytics board.
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Figure 1: Sausage matrix structure with water located
in between the protein network

2. Simulation of Salt Perception and Correlation
with Human-Sensorial Analytics

In this section, we describe the experiments used to
correlate salt content in the food with actual salt
perception by a group of human test subjects.

2. 1. Laboratory Experiments

An artificial masticator is employed to act as ,,mouth
model system® in order to simulate, monitor, and
analyze the chewing process of food with in situ
analysis of the salt release out of the food matrix. A
defined sample of the food matrix (sausage) is placed
in a cylindrical beaker, which is turned during the
experiment after each chewing cycle by 90° in order
to mimic the movement of the food induced by the
tongue. A cylindrical indenter, mimicking the
destructive effect of the teeth is moved by a texture
analyser at defined speed and frequency, based on
human-physiological ~parameters. Prior to the
mastication simulation artificial saliva is dosed to the
system. The release and diffusion of salt from the
food matrix to the saliva is measured by a
conductivity electrode. The experiments are carried
out at a temperature of 37°C. A draft of the
experimental setup is shown in Figure 2.

Sausage matrices with different concentrations of salt
(between 1.0 % and 2.40 %) are analysed by the
artificial masticator, results are shown in Figure 3. It
is evident that the salt release during mastication is



dependent on the initial salt concentration in the food
matrix.

indenter
{vertically
movable)

conductivit/
electrode

beaker {turning, 90° per chew)

sample
artificial
saliva

Figure 2: artificial masticator setup

In addition to the experiments with the masticator, the
samples are also analysed by a sensorial panel. The
aim is to describe and quantify the salty taste of the
different sausages.
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2. 2. Numerical Simulations

In order to understand the mechanisms as to how salt
is released from the food bolus into saliva, a new
numerical approach for the chewing process was
developed. The main requirements for such a
computer simulation program are as follows.

e The ability to model both solid, visco-
plastic/elastic materials with shear strength
as well as fluids.
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e Tolerance to severe deformations and mixing
of solid and fluid materials.

e The ability to describe salt transport from
food into saliva, both via diffusive and
convective mechanisms.

These requirements are difficult, if not impossible to
handle with commercially available Engineering
simulation software. In order to amend this situation,
we resorted to developing our own simulation
software, which is based on a mesh-free continuum-
mechanics method, Smooth Particle Hydrodynamics
(SPH) (Lucy, 1977; Gingold and Monaghan, 1997).
Meshfree methods are preferred over the traditional
Engineering approaches, which are typically based on
Finite-Element or Finite Volume methods, as these
rely on an explicit mesh representation of the material
to be simulated. The mesh itself is typically not
compatible with severe distortions and therefore
cannot handle the large deformations encountered
during the chewing process. In contrast, SPH does not
require a mesh and is well suited for complex, mixed
fluid and solid flows. All that is needed is a
discretization of the material into integration nodes.
To this end, the initial artificial masticator geometry
introduced above is represented by the points of an
alpha-FCC close-packed lattice with lattice constant 1
mm.

We model the food material as a viscous body with
shear strength. Its resistance to compression (i.e.,
pressure p) is described with Tait’s equation of state,
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Here, p is pressure, p and p, are the current and
equilibrium mass densities, and K is the bulk
modulus. These quantities have been chosen to
represent those of water. Shear strength is realized
through the introduction of explicit linear springs
between neighboring integration nodes. The spring
constant is adjusted such that the force-displacement
curve of a uniaxial compression test of a food
specimen is reproduced. As well as providing shear
strength, the springs also serve as the failure
mechanism which allows the food material to be split
into smaller entities as chewing progresses. This is
realized by describing a maximum spring elongation,



beyond which the spring fails irreversibly. This
maximum elongation is again parameterized using the
failure response of the food material. Saliva is
modeled with Tait’s equation of state and the bulk
modulus of water. In order to describe salt diffusion
from the food material into saliva, we use the
diffusion equation, which is also discretized with the
SPH formalism. Note that, in order to achieve a
realistic transport of salt into saliva, the effective
diffusion coefficient is proportional to the damage
parameter (the ratio of failed springs over the initial
number of springs) of an integration node. This
affects salt transport only between those parts of the
food which have been partially disintegrated via the
chewing motion, and saliva. Table 1 summarizes the
simulation parameters used here.

Table 1: simulation parameters

simulation parameter value

bulk modulus of water K=2.2 GPa
spring constant k=225x10"° N
max. relative spring elong. S =0.61

Simulations performed with this numerical model
result in good agreement with experimental data.
Figure 4 shows the stress-displacement curve for
uniaxial compression of a food specimen, and the
corresponding simulated response. Note that the
complex failure at high compression is well
reproduced using our conceptually straightforward
damage criterion.
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Using the parameters as detailed above, we simulate a
complete run of the artificial mastication process with
14 successive chewing motions. The complex flow
and damage response, as well as the salt diffusion into
saliva is visualized in Figure 5. Based on this
simulation, the concentration of salt in saliva and food
damage parameter is plotted versus the number of
chewing cycles, see Figure 6. Note that no physical
units are given for the salt concentration, as a
dimensionless salt diffusion coefficient has been
assumed as the determination of a physical diffusion
coefficient is ongoing work performed by us.
Regardless of this issue, the results very clearly
demonstrates that our model captures the expected
physical behavior of the mastication process, with the
amount of salt transferred from the food specimen to
saliva being directly related to the chewing motion.



salt concentration in water damage parameter food

salt concentration in water damage parameter food

Figure 5: numerical simulation of artificial mastication process. Top row: The centered image shows the initial
configuration, with a cut view through the container (gray), saliva (blue), food material (vellow), and impactor
(lilac). The left and right figures show a color-coding of salt content in water and food damage parameter,
respectively. Bottom row: these images show the simulation after two chewing motions. A considerable amount
of salt has been released into saliva, the food specimen shows considerable damage, and food and saliva are

damage parameter / salt conc fa.u.]

mixed.

2. 3 Correlation with human salt perception
12 T T T T T The different sausage products with varying
i‘ ) concentrations of salt were analyzed by a trained
J sensorial panel regarding the salt intensity during the
0.8 - chewing process according to DIN 10966:1997-12.
The perceived salt intensity was scaled between 0 (no
0.6 § perception) until 10 (high salt intension) and plotted
04 | over the time during chewing and swallowing. In
| Figure 7 the results of the sensorial analyses of
0.2 — dmegepurmerer | different sausages with varying salt concentration
between 1.0% and 2.4% are shown. The maximal salt
A S S T a—T intensity as well as the increase of saltiness before
chewing cycles swallowing correlate with the concentration of salt in

) ) ) ) o ) the sausage matrix.
Figure 6: correlation of salt concentration in saliva
with total damage of food specimen. Note that the
ordinate has been rescaled.
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Figure 7: Salt intensity of sausages with different salt
concentrations between 1.0% and 2.4% plotted over
the mastication and swallowing time analyzed by a

sensorial panel
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Figure 8: Dynamic increase of salt infensity of
sausages (1.4 % salt content) during mastication at
sensorial panel (large squares, violet) and
conductivity measured during artificial mastication
(small squares, blue)

In Figure 8 the results of the artificial mastication and
the time-dependent salt perception of the sensorial
panel are shown. The results indicate that there is in a
specific range a correlation between both analytic
tools. At longer times the saltiness measured by the
sensorial panel shows a slight plateau or even a
decrease, while the conductivity measured via
artificial masticator increases still linear. This
difference may be caused by the non-linear dynamic
salt perception by the human salt receptor cells, which
tend to get accustomed by longer constant salt
stimulus (McCaughey 2007).
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#- saltiness intensity

(conductivity)
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3. Discussion

This work presents an approach to a currently
relevant challenge in the food industry: The
optimization problem of developing a food matrix
with maximum salt taste perception and minimal total
salt content.

Our approach to this problem is threefold: we
combine laboratory experiments of food mastication
with numerical simulation, and compare the
predictions of these methods with a board of trained
human sensorial analysts. We have developed both an
artificial food masticator and a simulation code.
These tools provide us with quantitative data on the
salt release as a function of the number cycles. Initial
experiments show good correlation between these
methods and the human sensorial panel for the food
model system used (sausage). Thus, we have
established systems which can rapidly evaluate an
approximate degree of salt taste for different food
matrix specimens in a simple laboratory experiment,
decreasing the need for lengthy and costly human
sensorial analytics. On the other hand, the detailed
information available from the numerical simulations
can direct the development of the food matrix into
successful direction. For example, the optimal degree
of locally varying salt concentration can first be
predicted using the simulation code, before a
laboratory trial is conducted.
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ABSTRACT

Silver nanoparticles (nanosilver) that exhibit

antimicrobial activity have been incorporated into
polymers to create antimicrobial packaging materials.
Their use in conjunction with food has caused
concerns regarding the risk of migration. This could
increase human exposure to nanoparticles. A
migration model was developed based on
relationships defining migratability and subsequent
migratables and uses the Wailliams-Landel-Ferry
equation. Input parameters were based on observed
data in experimental migration tests and data
available from literature. The migration of nanosilver
from low density polyethylene (PE) nanocomposites
at 4 storage conditions was modelled with mean
migration ranging from 3.12 x 10~ to 6.63 x 107
mg/dm®. A parallel validation study was used to
validate model migration predictions.

INTRODUCTION

Many new technological applications have emerged
based on the novel behaviours exhibited by some
materials at the nanoscale (materials that have a
particle size between 1-100 nm). The collective term
used to  describe these  applications s
nanotechnologies and the food industry, among other
industries, is likely to benefit from them. An area
within the food industry that nanotechnologies have
shown promise is advancements in food packaging
materials (Cushen et al. 2012a). Nanosilver shows
unique antimicrobial behaviour and so has been
incorporated into commercially available food
packaging matrices; nanocomposites, which are
designed to exploit the novel properties of their
respective nanocomponent. Some nanomaterials are
not permitted in the EU due to limited toxicity
research results.
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Simulation models can be a valuable resource in risk
assessment, particularly in migration and exposure
assessments.

MATERIALS AND METHODS
Mathematical Model

A simulation model was designed using equations
defining migratability and subsequent migratables of
the nanocomposite/food system. The Williams-
Landel-Ferry equation was used with the dynamic
viscosity of the polymer to obtain the viscosity at the
glass transition temperature of the polymer, as in
Simon et al. (2008). It is defined as

n(Ty = Q)]

-1(ey(T-T,)
(C2+T_Tg)
exp”

where 1(T,) is the viscosity at the glass transition
temperature, 1(T) is the viscosity at the experimental
temperature as mentioned above, in this case, the
dynamic viscosity information of the polymer was
used. C; and C, are constants with values of 17.44 K
and 51.6 K respectively. The Williams Landel Ferry
equation is also used for the subsequent calculation of
the viscosity at a particular temperature, during
validation, experimental temperatures were used as

inputs.
[-1@ (T—Tg)} @)
(c2+T'Tg)
(M) = n(T) *exp”
Migratability (M), is a value of the likelihood of
particles migrating from a given system is defined as

M = [ ks Tt ] 3)
24(m)r

where kg is the Boltzmann constant (kg = 1.3807 x
102 J K™, t is time in seconds and r is the radius of
the particles. Migratables (N) is the quantity of

nanoparticles  migrating from the polymer
matrix.



N =Mac 4)

Where a is area of the nanocomposite-food interface
and c is the initial concentration of nanoparticles in
the nanocomposite.

A Monte-Carlo simulation model was used so that
inherent variability of the input parameters was taken

into consideration (Table 1). @RISK software
(Palisade, UK), a package specifically used for risk
assessment, was used as an add in in Microsoft
Excel. The inputs, constants and outputs of the model
are shown in Table 1.

Table 1: Inputs, Constants and Outputs of the Simulation Model

Name Subdivision Value Unit Symbol Eqt® Reference
Inputs
PE Dynamic Viscosity Uniform(1263*,10000) Pass n(p) - Ghaneh-Fard et al. (1996)
viscosity Temperature Uniform(423,453) K X - Faghihl et al. (2002),
Ghaneh-Fard et al. (1996)
Glass transition Triangular(143,173,193) K T, - Web reference 1, Simon et
temperature al. (2008), Web reference 2
Density 921 kg/m’ p(p) - Product specification
Nano- Density 10490 kg/m® p(n) - Ghander et al. (2007)
particle
Diameter Lo%i)stc(l.OI x 107 6.4 x M 2r - Measured value (mv)
107°%)
Storage  Time (there 1.1 days: 95040 seconds t - mv
were two levels
of this factor) 3.1 days: 267840
Temperature Tl Logistic(281.04,0.16) K T - mv
(there were two
levels of this T2 Logistic(294.86,0.31)
factor)
System Surface area Uniform(0.0099,0.0101) m? - mv
Conc. of K kgm® ¢ - mv
nanoparticles
in PE
Constants Pi 22/7 - T -
Boltzmann 1.3087 x 10 JK! kg - Simon et al. (2008)
constant
Empirical 17.44 K C - Simon et al. (2008)
parameter
Empirical 51.6 K C, - Simon et al. (2008)
parameter
Outputs  Viscosity at the Distribution with a mean of Pa.s N(Ty) [1]
glass transition 1.27 x 10" and ¢ of 5.9 x
temperature 10°
Temperature Distribution with a mean of  dn/dT  n(T) 2]
dependence of 8.9 x 10%and o of 4.8 x 10*
viscosity
Migratability Specific to the levels of the - M [3]
factors: tand T
Migratables Specific to the value of M Mg N [4]

and c and thus the factor

p(n)

*calculated from data reported in Ghaneh-Fard et al. (1996) and Faghihl et al. (2008) using the equation for complex

viscosity of polmers (Web reference 3).
**gee table 2.
o : standard deviation of the distribution

30



Model Validation

Experimental Procedure

PE  nanocomposites were designed  which
incorporated silver nanoparticles, radii of 25 nm, at
0.5% w/w. Skinless, boneless chicken breasts
(samples) were sourced from an Irish supplier and
wrapped in 120 cm® of one of the prepared
nanocomposites on the breast bone side of the
chicken. Aluminium foil was wrapped around these
to eliminate any possible variation that light may
impart (Cruz et al. 2008).

Each sample, nanocomposite, foiled (unit) was then
vacuum packed to ensure maximum contact between
the active nanocomposite and the chicken. For such
active packaging materials, sharing a common
interface or physical contact with the food surface is
essential for the desired effect to be observed
(Vermeiren et al. 2002). Each unit was done in
quadruplicate. Two control samples were prepared
for each storage condition tested.

Units were kept in constant temperature rooms for the
duration of the experiment; either 1.1 days or 3.1
days. Temperature probes were used to log the
internal temperatures of the samples at the various
temperature levels. This period allowed for the
nanosilver in the nanocomposites to migrate into the
samples.

All packaging was removed from the samples and
Inductively Coupled Plasma Mass Spectroscopy
(ICPMS) analysis was used to quantify silver in the
samples. Samples were analysed according to the
protocol assigned the ISO number: DIN EN ISO
17294-2-E29.

Model-Experimental Synchronization

The conditions of the experiment were used as inputs
in the model. This allowed for the direct comparison
of the model outputs with the experimental results.
The input variable of concentration was converted
from % w/w (given in experimental procedure above)
to kg/m’ as required by the model (Table 2).

Table 2: Inputs and outputs of the model of nanosilver concentration in the Nanocomposite

Value Symbol  Unit Equation

Inputs

Quantity of PE in nanocomposite Triangular(99.48, 99.5, 99.52) b % wiw

Quantity of Silver in nanocomposite Triangular(0.48,0.5,0.52) d % w/w

PE Density 921 p(p) kg/m’

Silver density 10490 p(n) kg/m’

Outputs

Volume of PE Distribution with a mean of 1.08 x f m’ b/ p(p)
107 and o of 8.86 x 10

Volume of silver Distribution with a mean of 4.76 x10° g m’ d/ p(n)
7and 6 of 7.78 x 107

Volume of 1 kg of nanocomposite Distribution with a mean of 1.08 x10° h m’ ftg
*and 6 0f 8.09 x 10°®

Weight of 1 m® of nanocomposite Distribution with a mean of 925 andc  j kg/m® 1/h
of 0.07

Weight of nanocomponent in 1 m® of Distribution with a mean of 1.53 x10° ¢ kg/m’ jxd

nanocomposite

Sand 6 of 1.45 x 10°°

RESULTS
Experimental Migration

The mean of the control samples for each storage
condition was subtracted from each replicate result in
that storage condition. The mean and standard
deviation of the 4 replicates (after control samples
were taken into consideration) were calculated for
each storage condition. Control chicken samples’
silver quantities had a mean of 0.008 mg/kg and a
standard deviation of 0.001 mg/kg, this may be due to
test sensitivity and background noise.
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It should be noted that the levels of migration
observed in this study are from a pilot bench scale
nanocomposite composed in a laboratory for
experimental uses only. Commercially, it would be
unlikely that nanocomposites containing 5% w/w fill
of nanosilver would be produced because novel
effects are observed at much lower levels; less than
10% of the nanocomponents incorporated into the
nanocomposites described in this study and the law of
diminishing returns applies (Cruz-Romero et al.
2012). This is particularly important as the level of
nanoparticulate fill was identified as the most
significant parameter influencing migration compared
to other parameters of time, temperature and



nanoparticle size in a recent study (Cushen et al.
2012b).

The two levels of temperatures set and logged over
the course of the laboratory based experiment (and
also used as input distributions in the simulation
model) are both above the recommended storage
temperature of a perishable food product (> 5°C); the
means of the temperature distributions, T1 and T2,
were 8.14°C and 21.87°C respectively. This is an
important consideration when comparing the
migration of nanosilver in this study to other studies
or ingestion limits. This study assesses the migration
in a nanocomposite — food system, not only from
nanocomposites with a high nanoparticle fill level but
at relatively high temperatures. Hence the study
represents a pessimistic evaluation of potential
commercial use.

Model
0.00192 0.00523
(@ 5.
d 3.
> 600
7
S 400
@)
> 200
=
Ra) o n o n o
o) — [sa) O [} —
= o o o o —
Ey =] S S =] o
o o o o o
Migration (mg/dm?)
(© 0.00322 0.00877
5....
2 0.
B
=
()
)
>
R
=
el
8 oo} O < o o 2] (o) < o o
A s 8 8 858 8 g 9 % g 17
o o o o o o o o o o
[~ -} =) S S o =) S S o

Migration (mg/dm?)

Probability Density

Probability Density

The predicted migration values increased with time
and temperature, this trend corresponds to results in
Simon et al (2008) where a broader temperature
range and longer time periods were studied.

Model Validation

It is shown in Figure 1 that the model proved to be
reliable in predicting the migration results for
nanosilver over a range of storage conditions. The
model overestimated the result in all storage
conditions tested. However, for the storage time of
3.1 days at temperature T2, the model overestimated
the result to a greater extent, thus the prediction had a
larger margin of error than the other storage
conditions tested (Table 3). The reason for this is
unclear and requires further investigation. It is noted
that for the other cases (Figure 1. a — c¢), the model
slightly overestimates migration. However, in all
cases, the model predictions lie within the range of
the experimental results.
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Figure 1: Model predictions for the migration of nanosilver from PE nanocomposites compared to experimental
migration results at (a) Time 1.1 days, Temperature T1 (b) Time 1.1 days, Temperature T2 (c) Time 3.1 days,
Temperature T1 (d) Time 3.1 days, Temperature T2

In the case where a migration simulation model was
being used for a commercial food packaging material,
the underestimation of migration would be a greater
cause for concern in a migration simulation model
than an overestimation. In general, if there is any
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margin for error in simulating models, the model
should overestimate migration rather than
underestimating it (Helmroth et al., 2002). This is to
ensure the toxicological safety of the material and to
protect consumers.



Table 3: Accuracy of Migration Model Predictions for Nanosilver from PE Nanocomposites over the Range of
Experimental Storage Conditions

Time Temperature Modelled mean, st. Experimental mean, st. Dev. % Error

(days) Dev.

1.1 T1 23x10°,1.4x10%  2.1x107 1.6 x 107 15.27

3.1 T1 29x107%,1.7x10%  2.8x107,1.7x 107 21.43

1.1 T2 3.85% 107,23 x 10" 4.1x10°,1.4 x 107 13.17

3.1 T2 49x10°,29x10"  3.1x10° 3x10" 108.88
CONCLUSION Simon, P., Chaudhry, Q., and Bakos, D. 2008. “Migration

of engineered nanoparticles from polymer packaging to

Migration occurred in the nanosilver PE food - a physicochemical view.” Journal of Food and

nanocomposite — chicken system with mean
migration ranging from 8.0 x 10 to 5.4 x 107
mg/dm’. The model distributions had mean values
ranging from 3.12 x 10~ to 6.63 x 10~ mg/dm”. The
validation stage confirmed that model predictions
were within the measured range. The model outlined
in this paper requires a review of all input parameters
to ensure all variability is accounted for. Inputs tend
to err on the side of caution, which is particularly
important to consider when considering consumer
exposure and hence safety.

Before this simulation model is used in an exposure
assessment, it must undergo further validation so
discrepancies may be reduced and the overall
accuracy improved.
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ABSTRACT

A multiphase Eulerian Computational Fluid Dynamics
(CFD) model was developed to simulate the batch fluidised
bed coating process. Model development is described using
stepwise addition: First, a gas-solid 2- and 4-phase Eulerian
model was used to evaluate the appropriate selection of the
drag model. Next, the effect of the pneumatic nozzle — used
to atomize the coating solution — on the gas/solid
fluidisation behaviour was described. A third step dealt with
the inclusion of the liquid phase (coating solution)
dispersion in the reactor, using appropriate atomizer models
in a Lagrangian extension to the CFD model. Finally, the
overall CFD fluidised bed coating model, complemented
with the heat and mass transfer equations to account for
particle heating and droplet evaporation phenomena was
presented. Comparison and evaluation between time-
averaged solids volume fractions obtained from experiments
and from simulations was made using experimental data of
Depypere et al. (2009).

INTRODUCTION

Fluidised bed coating is a process in which a particulate
solid (i.e. core) material is encapsulated by spraying a
coating polymer directly into a fluidised bed. The aim of
coating particulates is to control their dissolution behaviour
(release control), to protect the core ingredients, to increase
the overall product quality or to increase the processing
convenience (Depypere et al., 2003).

An aqueous or organic solvent-based solution containing the
coating polymer is continuously sprayed by means of a
pneumatic or binary nozzle, which may be submerged in or
positioned above the bed (Ronsse et al., 2007a,b; Depypere
et al., 2009). In top-spray configuration (Figure 1), regarded
as the most appropriate method for food ingredient
applications, binary nozzles are positioned above the bed,
producing droplets with a size ranging from 10 to 40 pm
(Guignon et al., 2002). Due to the complex thermodynamic
interactions between the droplet phase, the particles and the
gas phase, the coating process is prone to unwanted yield-
reducing or quality-degrading side effects, such as
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agglomeration, premature droplet evaporation, attrition of
friable and degradation of heat-sensitive core or coating
materials (Guignon et al., 2002; Ronsse et al., 2007c¢).
Consequently, it is not possible to design and optimise
fluidised bed coating processes without extensive trial-and-
error testing which results in expensive and time-consuming
scaling studies because of the large amount of variables
involved (Cooper and Coronella, 2005). Therefore, in order
to reduce the research and design work, mathematical
models could be used to understand and clarify the impact of
different input variables on process efficiency.

Filters

Reactor

A&gmi a
Fluidised i
bed
Spray cone
Air distributor

Figure 1. Overview of the batch, top-spray fluidised bed
coating reactor.

Computational Fluid Dynamics (CFD), a powerful
numerical tool for solving fluid flow problems, has been
widely used in an attempt to model gas-solid fluidised beds
using two different approaches: a discrete method (Euler-
Lagrangian model) and a continuous approach (multifluid
or Eulerian—Eulerian model). In the discrete phase method,
the force balance, with the inclusion of contact forces
arising during interparticle collisions, is calculated for each
particle within the solid phase while the fluid phase is
described by a locally averaged Navier—Stokes equation with
the use of interphase forces for coupling of the two phases.
The multifluid model, on the other hand, is based on
continuum mechanics which treat the two phases as
interpenetrating continua (Taghipour et al., 2005). Up to
date, many researchers have attempted to study the complex
flow behaviour in gas-solid flow systems by means of CFD,



as shown in the review papers of Lettieri and Mazzei (2009)
and Zhou (2009).

In this paper, the hydrodynamic behaviour of the fluidised
bed coater was modelled by means of CFD associated with
an Eulerian-Eulerian approach. Modelling was performed in
four successive steps. First, a 2-phase gas-solid CFD model
was developed in which the appropriate drag model was
selected that gave the best agreement with the experimental
PEPT data from Depypere et al. (2009). Also, an improved
model was developed based on a 4-phase Eulerian model to
account for particulate phase polydispersity and to improve
overall agreement with the experimental data. Next, the
release of compressed air, resulting from the use of the
binary nozzle, was added to the CFD-model. In a third step,
the atomisation of the droplets was added by means of an
air-blast atomizer model and droplets were tracked by
means of a Lagrangian extension to the CFD model
developed in the first two steps. A fourth and final step
comprised the addition of the heat and mass transfer
equations in order to describe phenomena such as particle
(convective) heating and droplet evaporation.

MODEL DESCRIPTION

Introduction

An Eulerian modelling approach was used whereby the
different phases were treated as interpenetrating continua by
incorporating the concept of phase volume fraction, and to
solve the conservation equation for each phase to obtain a
set of equations which have a similar structure for each
phase.

Governing equations: mass and momentum
The conservation of mass of phase ¢ (with ¢, either gas or
solid) is described as

g( q,Oq)+V-(Olq,0q\7q)=0 (1

where a,, is the phase volume fraction, p, the density and v,
the velocity of phase g.

The volume fractions of each phase are constrained by (with
N, being the number of phases in the model):

>a,=1 )

The conservation of momentum for the fluid (i.e. gas) phase
is given by the following equation:

0

5(a/p1v/)+ V-(ap9y)=-aV-p+V-1,
N, 3
+o,0,8 — ZKchls

s=1

35

In Eq. (3), v;s is the slip velocity between the phases, where
the subscript / denotes the fluid phase and s indicates the
solid phase. The symbol N; equals the number of solid
phases in total. Most CFD models only treat a single solid
phase, however in this paper, models having more than one
solid phase were dealt with as well. Finally, in Eq. (3), K, is
the drag force coefficient relevant to the phases / and s, p is

the pressure and 7 the deviatoric effective stress tensor of
the fluid phase.

Analogous, the conservation of momentum for each solid
phase (1 <s < N;) is expressed by adding the solid pressure

term — Vp_ to the right side of Eq. (3),

aat(aSpSVS ) + V ’ (aSpS‘_jS‘_}.S) = _QTV : p - VpY

v, @)
+V’fv +aspsg+Klvvls + ZK

m=1,m#s

ms VI’HS

In this equation, Kj; denotes the momentum exchange
coefficient between the fluid (i.e. gas) phase / and solid
phase s, while K, represents the momentum exchange
coefficient between solid phases s and m (1 <5 < N, m #3s,
only applicable when using more than one solid phase).

Interphase momentum exchange coefficients

It can be seen in Egs. (3) and (4) that momentum exchange
between the two phases (drag force) can be represented by
the product of the slip velocity (v;) and the gas-solid
exchange coefficient, K.

In this study, five different drag force models were evaluated
based on different exchange coefficient models. Besides the
gas-solid exchange coefficient models available in
FLUENT, namely the Wen-Yu model (1966), Symlal-
O’Brien model (1989) and Gidaspow model (Gidaspow et
al., 1992), the other models proposed by Arastoopour et al.
(1990) and Gidaspow (1994) — the so-called modified
Gidaspow model — were evaluated for application in
fluidised bed reactors with tapered geometry (as shown in
Figure 1). For more details concerning these drag models,
the reader is referred to Duangkhamchan ez al. (2010).

When using more than one solid phase, the solid-solid
momentum exchange coefficient, K, needs to be calculated
as well, as shown in Duangkhamchan et al. (2011).

Droplet model and discrete phase extension

In addition to solving transport equations for the continuous
phases (i.e. gas and solids), a discrete phase of droplets was
simulated in a Lagrangian framework. The trajectories of
these discrete phase entities were computed individually by
integrating the force balance of the droplets (Newton’s
second law) (Behjat et al., 2010; Pimentel et al., 2006),



2, was defined and a grid was generated using Gambit
Q) 2.2.30 (Ansys Inc., Canonsburg, PA). A hybrid hexahedral-
tetrahedral grid with mesh refinement at near-wall regions
was generated, containing 108721 cells. Adding the nozzle

With F), the drag force exerted onto the droplet, v, being into the model geometry further increased mesh complexity

the droplet velocity and, p; and p, being the density of the up to 209955 cells. For the modelling work including

droplet and the gas phase, respectively. Assuming spherical droplet dispersion, a full geometry mesh was used and

droplets, the drag force was calculated using the Morsi and contained up to 473083 cells.

Alexzander (1972) drag coefficient correlation. Initial

droplet diameter, at the nozzle, was calculated using the air- The mesh was exported into Ansys Fluent v12 (Ansys Inc.,

blast atomizer model. For more details concerning the Canonburg, PA). Flow turbulence was simulated using the

droplet model, the reader is referred to Duangkhamchan ef standard k-& model with standard wall functions, and first

al. (2012). order upwind schemes were selected for the convection
terms. The relation between velocity and pressure

In the overall multiphase CFD model, the coupling between corrections was calculated using the phase-coupled SIMPLE

the continuous (gas/solids) and discrete (droplets) phases algorithm. Finally, a time step of 0.0001 s with a maximum

and the impact on both the discrete phase trajectories and of 100 iterations per time step was chosen in order to

the continuous phase flow were included. improve convergence behaviour. CFD simulations were
performed using a single-precision, unsteady-state, first

Governing equations: energy order implicit solver.

In the final stage of model development, heat and mass

transfers were included using the conservation of energy ﬁ outet ﬁ Qutiet

equation. For the gas phase, this conservation equation is
expressed as

Expansion chamber —»

0 15)
E(azpzh/ )+ V- (a/pl‘_}/h/ ) =-q % +7,: VY,
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In Egs. (6) and (7) is & the specific enthalpy of the phase, O For ‘Ehe validation of the model predicted results, the
is the intensity of interphase heat exchange and ¢ is the heat experimental data obtained by Depypere ef al. (2009) were

flux (thermal conduction). Concerning the interphase heat used. In this research work, fluidisation experiments were
exchange, the gas phase energy conservation equation conducted in a laboratory-scale Glatt GPCG-1 fluidised bed

contains transfer terms with the solid phases (Q;;) and the (Glatt GmbH, Germany), the reactor had dimensions 0.15 x

droplet (discrete) phase (Qp). The solid phase conservation 0.56 > 0.30 m (bottom diameter * height x top diameter).
equation contains transfer terms with the other solid phases

(O,), the gas phase (Oy) and the droplet phase (Ou). These For. the ﬂuidisation. experimel}ts 0.75 kg of glass beads
transfer terms are calculated using the dimensionless (Microbeads®, ~ Sovitec, Belgium) were used (surface-
Nusselt numbers. weighted diameter, ds;: 196.5 pm). The motion of the glass

beads (solids) inside the reactor vessel was recorded using
Positron Emission Particle Tracking (PEPT). This technique
allows 3-D movement of a single tracer particle to be
followed in a non-invasive way. By tracking the particle
location and movement over prolonged periods, time-
averaged steady-state solids volume concentration and
voidage profiles can be derived.

For the droplet phase (discrete), the energy conservation
equation was expressed on an individual droplet basis. Heat
and mass transfers were estimated using the dimensionless
Nusselt and Sherwood numbers. The complete overview of
all model equations is presented in Duangkhamchan (2012).

NUMERICAL SET-UP
RESULTS

The half geometry of a laboratory-scale Glatt GPCG-1

fluidised bed (Glatt GmbH, Germany), as shown in Figure Hydrodynamic bed behaviour modelling
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As a first step, a two-phase (solid/gas) CFD model was used
to predict the hydrodynamic behaviour of the fluidised bed.
Different drag force models were evaluated in order to select
the most suitable drag model for further modelling.

Using the CFD model, it was found that after simulating 5
seconds of fluidisation, near steady-state conditions were
attained (Duangkhamchan et al., 2010). Consequently, to
evaluate the model-predicted voidage profiles with the
experimental PEPT data, time averaged profiles were taken
between 5 and 15s of simulated data.

In Figure 3, comparison is made between the model-
predicted voidage profiles using five drag models and the
experimental voidage profile, as measured using PEPT.

(a) (b)

© (d)

In order to study the effect of particle size distribution, the
simulations were repeated using the 4-phase Eulerian
model, in which three separate solid phases were defined.
The diameters of the solids in each of the three phases were
135, 185 and 235 pm, respectively. These particle sizes
correspond to the average size of the particles with a
diameter below the 20", between the 20™ and 80™, and
above the 80™ percentile, respectively, from the particles
used in the PEPT-experiments, as is also shown in Figure 4
(Depypere et al., 2009).

The voidage profiles, as predicted by the 4-phase model and
using 5 different drag models, are presented in Figure 5. As
can be observed, significant improvement over the 2-phase
model was achieved. Comparing the different drag models,
it was found that the modified Gidaspow model (Fig. 4e)
gave the best agreement compared to the experimental
PEPT results.
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Figure 4. Particle size distribution of the glass beads used in

the PEPT-measurements and definition of the 3 solid phases
with their corresponding diameter in the 4-phase model.
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Figure 3. Model-predicted (2-phase) and experimental bed 015
voidage (dimensionless) contour plots in the XZ plane for
glass beads fluidised at 97 m*h™" from (a) PEPT-experiment,
(b) Wen-Yu, (c) Symlal-O’Brien, (d) Gidaspow, () 005

modified Gidaspow and, (f) Arastoopour model.
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From Figure 3, it is found that the model-predicted voidage
contours showed poor agreement with the experimental
results. A possible explanation could be the effect of the
width of the particle size distribution used in the
experiments as opposed to the model, in which the solid
phase is characterised by a single particle diameter.

37



0.20 0.20

0.15 0.15
Eo10 Eo10
N N

0.05

®

Figure 5. Model-predicted (4-phase) and experimental bed
voidage (dimensionless) contour plots in the XZ plane for
glass beads fluidised at 97 m’h™ from (a) PEPT-experiment,
(b) Wen-Yu, (¢) Symlal-O’Brien, (d) Gidaspow, (¢)
modified Gidaspow and, (f) Arastoopour model.

Effect of atomisation air

In the second step, the model geometry and associated
boundary conditions were modified to include the pneumatic
nozzle in the modelled reactor domain. The simulations
were carried out using the modified Gidaspow drag model,
as it has been demonstrated in the previous section to be the
most suitable drag model. Furthermore, all results presented
in this and the next sections were all carried out using the 4-
phase Eulerian CFD model. A comparison between
simulation and experimental results with variation of
atomisation air pressure, more specifically pressures of 1.5,
2, 3 and 4 bar, is presented in Figure 6.
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Figure 6. Comparison between PEPT and simulated, time-
averaged steady-state voidage in the YZ plane at different
atomisation air pressures: (a) PEPT-1.5 bar, (b) simulation-
1.5 bar, (¢) PEPT-2 bar, (d) simulation-2 bar,(e) PEPT-3
bar, (f) simulation-3 bar, (g) PEPT-4 bar, (h) simulation-4
bar.

From these figures, the change of the time-averaged
voidages with the increase of atomisation pressure can be
observed. More specifically, the central part of the conical
vessel below the nozzle (positioned 12 cm above the air
distributor) is occupied by a hollow cone. As seen in the
experiments and as predicted by the model, this hollow cone
enlarged with the increase of atomisation air pressure
resulting in a smaller radial zone between the nozzle
atomisation cone and the reactor wall. In the hollow region
below the nozzle, the solid particles have to be lifted by the
fluidising air against the counterforce of the atomisation air
resulting in a voidage. It could be explained that particles
move predominantly upwards in the centre to the above bed
region, then move radially towards the walls and
downwards along the walls. This particle flow behaviour
was confirmed by experimental results obtained by Positron
Emission Particle Tracking (PEPT) (Depypere et al., 2009).

Again, these results confirm that using the 4-phase Eulerian
model and the modified Gidaspow drag model, sufficient
accuracy can be achieved in predicting the time-averaged
hydrodynamic behaviour of the fluidised bed.

Droplet dispersion

Droplet dispersion was added to the 4-phase CFD model by
using a Lagrangian extension (also called discrete phase
model, DPM) in which individual droplets were tracked
throughout the computational domain. Initial droplet
diameter was calculated using the air-blast/air-assisted
atomiser model (Duangkhamchan ez al. 2012), of which the
parameters were calibrated using experimental droplet size
data as supplied by the nozzle’s manufacturer (Duesen-
Schlick, Germany).

Figure 7a shows the contour plot of the simulated time-
averaged steady-state voidage when fluidising 1 kg of glass
beads using a fluidisation air flow rate of 97 m*h™". As can
be observed from this figure, in the central part of the
reactor, the region under the nozzle is occupied by the
hollow atomisation cone.



Fig. 7b shows the droplet positions at ¢ = 15s. The
calculated droplet tracks revealed that droplets moved
downwards along with the atomisation air cone until facing
the counter-current fluidising solid particles. Considering
the absence of phenomena including droplet evaporation
and droplet/solids adhesion, the DPM algorithm continues
to track the droplets until they exit the reactor at the top or
impact one of the reactor geometry boundaries. In reality,
the majority of the droplets adhere onto the fluidised
particles, contributing to the layered growth of the coating
wall around the individual core particles.

Unfortunately, due to practical constraints in the PEPT
experiments it was not possible to trace droplet trajectories
and consequently, no validation of the droplet trajectories
could be performed in a liquid-sprayed gas-solid fluidised
bed. However, limited validations using fluorescent dyed
coating solutions sprayed in a transparent reactor, in the
absence of the fluidised particles and using high-speed
imaging recording proved satisfactory agreement with the
model predicted droplet trajectories (Duangkhamchan ef al.,
2012).
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Figure 7. The simulated time-averaged voidage profile in
the XZ-plane with 1 kg of glass beads and a fluidisation air
flow rate of 97 m’h™' (a) and (b), the corresponding droplet

tracks, simulated at z= 15 s.
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Heat and mass transfer

In a final and still ongoing step in modelling the fluidised
bed coating process, the energy conservation equation was
added to the existing 4-phase model with the Lagrangian
extension for the droplet trajectories. Heat transfer between
the gas and solid phases was modelled, as well as the heat
and mass transfer between the individual droplets
(Lagrangian extension) and the gas phase.

Preliminary simulations were performed to test the model
and comparison was made with the reference experimental
scenario described in Ronsse et al. (2007b). In this reference
scenario, 0.75 kg of glass beads with an average diameter of
365 um were fluidised using air at 50°C and plain water
was atomised onto the bed at a rate of 5.52 g/min and using
atomisation air at 2.5 bar. These boundary conditions were
also applied in the preliminary simulations using the 4-
phase model, of which the three solid phases were defined to
have a particle diameter of 230, 330 and 430 um.

The model-predicted time-averaged gas (air) and solids
temperature distribution as well as the air absolute humidity
are plotted in Figure 8. The model-predicted air temperature
and absolute humidity distributions were consistent with the
experimental observations carried out by Jimenez et al.
(2006). The air and solid temperature contour plots revealed
the existence of a low temperature region below the binary
nozzle partly. In this region, the temperatures of gas and
solid phases were approximately 26-29°C below the
fluidisation inlet air temperature. The presence of the low
temperature zone can be explained by the evaporation of
freely moving droplets — hence the higher air humidity, as
well as by the release of cold (room temperature)
compressed air.
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Figure 8. The simulated time-averaged air (a) and solids (b)
temperature (°C) in the XZ-plane, and (c) the time-averaged
absolute air humidity (g/m?).

Also, the low temperature zone below the nozzle extended
deeper for the gas phase compared to the solids. This
observation is explained by the predominant upward
movement of solid particles in the centre-bottom part of the
bed. Due to thermal inertia of the particles, they require a
certain time and consequently, a certain vertical distance,
until they equilibrate with the local (colder) temperature of
the gas phase below the nozzle.

However, when the modelled outlet air temperature of the
reactor, being 37°C, was compared to the experimental
value of 30.4°C (Ronsse et al., 2007b), a large discrepancy
was observed. The reason for this difference is the absence
of the droplet-particle interaction in the current model. In
reality, droplets adhere onto the fluidised particles and
through evaporation, they remove latent heat at the particle
surface. Because in the model, droplets do not interact with
the solid particles in the model, the algorithm continues to
track droplets until they exit the reactor or impinge on the
reactor walls. Thus, only evaporation in freely moving
droplets is taken into account. Consequently, the overall
latent heat removal from the fluidised bed was largely
underestimated in the model, explaining the higher air and
solids temperatures observed in the simulation. Therefore,
in future work, the presence of droplet deposition onto the
fluidised particles and the subsequent heat and mass transfer
between fluidising hot air and wet particles will be taken
into account.

CONCLUSIONS

In this paper, a multiphase Computational Fluid Dynamics
(CFD) model was developed to simulate the batch fluidised
bed coating process. A modelling methodology was
presented which included a stepwise addition of complexity
to the CFD model with experimental validation at each step.
Through modelling, it was concluded that a 4-phase model
could provide significant model accuracy in order to account
for the polydispersity of the fluidised solids. Also, in tapered
fluidised beds, the modified Gidaspow drag model has been
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demonstrated to give the most accurate prediction of solids
volume concentration or voidage profiles.

When droplet behaviour has to be included into the model,
then a hybrid multiphase Eulerian-Lagrangian model,
whereby droplets are modelled as discrete entities proved to
be adequate. Considering the modelling of heat and mass
transfer during fluidised bed coating processes it has been
demonstrated that the model-predicted result was consistent
with the experimental tendency. However, discrepancy
between the measured outlet air temperature and that
predicted by the CFD model could be seen. In order to
resolve these discrepancies, other mechanisms including
droplet/particle adhesion and mass transfer occurring at the
surface of wetted particles, need to be included in the model
as well.

Ultimately, the goal in modelling the fluidised bed coating
process is to achieve a complete process model in which
phenomena such as agglomeration, layered growth and
spray drying losses can be predicted.
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