SciFi-It'2017, International Science Fiction Prototyping Conference, April 10-12, 2017, Novotel, Bruges, Belgium, Themes

 

Designing your Future with Science Fiction

Sponsored by

CONFERENCE THEMES

Augmented Reality and Pervasive Systems in Simulation

Pervasive systems are likely to become the next programming paradigm for the information society. They will allow us to implement the augmented reality and the ubiquitous computing ideas. Pervasive systems in factories enable operators and machines to interact on a common virtual level which is also capable of simulating the real part. Among other related topics, this track includes: ubiquitous computing, augmented reality, mixed reality, wireless networks, hybrid systems, simulation models, human-computer interaction, artificial intelligence, security, scalability, fault tolerance, smart devices, and pervasive services.

Submit your proposal in AR here

Sci-Fi Product Design Methodology – From Mind to Matter

As with any other design, a Sci-Fi envisaged product has to go through several stages before it can become a true product, they are: Simulation of product design; Planning and control; Reconfigurable responsive computing and process re-engineering; Integrated product and process modelling; Modelling and simulation in virtual global enterprises; Simulation based design; Qualitative and fuzzy modelling and simulation in engineering design; Modal logistics in systems design; Simulation in support of system specification and design.

Modern simulation tools enable understanding, prediction, and improvement of product performance digitally. By performing simulations as early as possible in the engineering process, we can explore and optimize a large number of different concepts. These multiple and very short design loops result in early insight in product behavior. The increased insight reduces downstream cost for expensive physical prototypes, increases the product’s performance and downstream potential cost for delay in market introduction. By keeping the intended manufacturing process in mind from the early start of a project, these concepts can then be translated into feasible, viable and reliable products.

Submit your proposal in SciFi Design here

Interfacing the real and digital world

As the barrier between the real world and the digital will be fading the following technologies will come to the forefront in the field of business transactions and contacts: enhanced reality/ mixed reality/ telepresence/ augmented reality/ virtual reality using Digital Walls, Head-up Displays and haptic holograms. Furthermore these tools will help f.ex. in the Real Estate Business to create virtual tours of properties or to organize virtual field trips at school, Game Launches, Product Launches, Trade Shows, Product Visualizations and Story Telling. Lingoland and House of Languages

AR requires advanced, low-latency machine vision in order to convincingly combine real and virtual objects in the same interactive scene. Augmented Reality is interactive, (Shared) Virtual Reality is immersive while Blended/mixed reality is more Computer Generated (CG) Virtual Reality (CGVR)

In all of the above applications the following hardware is mostly used: Microsoft Hololens, Magic Leap, Leap Motion, Oculus Rift, Microsoft Kinect, Google Glass, DAQRI…..

Submit your proposal in interfaces here

3D printing the world - From 3D printer to replicator

As 3D printers are becoming more mainstream, powerful and affordable 3D printing is opening up new horizons in applications, such as printing food, medicine, buildings, drones, clothes, shoes, machine parts and machines. In its most extreme form we have off world 3D building and manufacturing. Advancements in 3D printing have made also great leaps in printing artificial organs, bones, and even tissue. On extrapolation the next step will be chemprinting with which objects will be grown in chemical vats. (f.ex.growing drones chemputer BAE)

Submit your proposal in 3D printing here

Application Areas

Augmenting the human – from human to humanoid

Non invasive upgrades: Wearable computing or Data Wearables, Smart Clothes using RFID and embedded processor technology, intelligent fabrics, polytronics, smart contacts, Exoskeletons

Invasive upgrades: Growing Organs, Smart Prosthetics, 3D Printed Prosthetics, 3D printed artificial organs, bones, and even tissue. Nanobots, Electronic Drug dispensers, Electronic Implants, Human-Robo convergence

Submit your proposal in human augmentation here

From home to digital playground

The home of the future will be managed by ambient intelligence using pervasive computing, GPS active RFID electronic tags, wireless sensor networks and haptic interfaces to monitor your house (Amazon’s Echo), your health and the general running of your home environment. Entertainment will be piped into your home through Mediascapes, Interactive posters and digital walls using Augmented and Virtual Reality, while haptic holograms created through Direct Atom Imaging by Chemical-Sensitive Holography might serve as virtual companions.

The ambient intelligence will manage your service robots –Robot Maids (Mahru Z) – Robot Vacuum Cleaners (Roomba) using f.ex the software language GAZEBO (http://www.osrfoundation.org/)

Objects within your house will be either virtual projected decorations, 3D printed furniture and homeware which will be totally tactile enhanced.

Submit your proposal in home technology here

From Shopping Mall to Tailored Shopping Experience

The shopping Mall through Face Scanning Marketing Technology and in store activation phone apps will provide each and every shopper with targeted advertising based on socially aware AI, your web preferences, clicks and past purchases. With in-store activation they will contact you by augmented reality, intelligent displays, digital walls and personalized messaging (like Apple’s Ibeacon commercial retail -display advertising tailored to individuals). Your purchase experience will be enhanced through VR Product presentations online and retail simulations based on shopper intelligence, avatar sales assistants (customer tracking tools) creating such technology as Fluid Shopping or Amazon Go.

Submit your proposal in retail here


From Office to Road Warrior Virtual Battle Station

The office of the future is set to break out of its four walls and open up and connect to the world using the latest in Augmented and VR technology. This will be done using interactive whiteboards, shared screens, synthetic environments, telepresence, head-up displays using Air touch technology through gestural interfaces. (Microsoft Kinect). Digital assistants like the Microsoft Cortana digital assistant, will be on standby to help you function more efficiently.

Submit your proposal for the SciFi Office here

Designing Future health Care - From hospitals to “Home-spitals” - From Hospital Room to Sickbay

Within the confines of the future hospitals great changes are coming in the form of the introduction of care robots (like MOnarCH Multi-Robot Cognitive Systems Operating in Hospitals), robot surgeons (Verb robot from Google or Stiff-Flop - A Surgical Robot based on an Elephant's Trunk) and robot doctors who will dispense drugs. Microbots will perform surgeries from inside your body and ingestible robotics will diagnose or operate on you before they dissolve. While on the other hand human doctors will be able to analyze patients using “Tricorders” like the Scanadou Scout or by following patients using apps (like Apple ResearchKit an open-source platform that empowers researchers to design and administer app-based health research, which they can assemble quickly via a plug-and-play approach and without the need for a team of coders) on their mobiles, and making diagnoses using expert systems (IBM Watson, Machine learning algorithms or AlphaGO). One day, instead of getting prescriptions from your doctor, brain implants may read your symptoms and beam them directly to the smartphone. It will then print out a custom set of drugs to address the root of your problems. Scanning technology will one day create devices that combine spectroscopy, magnetic resonance, and radiation in an all-in-one scanner. The hospital beds themselves will become patient monitoring facilities, optimizing the workload for hospital personnel.

As to the diagnostic analysis, doctors and students will be confronted with Virtual patients, based on 3D Scene Modelling in Human Anatomy Simulators, Interactive 3D Virtual Autopsy Tables and 3D virtual birth simulators.

Submit your proposal in SCIFI hospital here

From robot worker to robo-buddy

As robots become more common, their successful co-existence with humans will depend on their appearance and behavior. The ability to navigate inert and moving objects autonomously and safely is a huge first step.

The way robots appear is often determined by the application. A roving security robot can look imposing, while an inventory machine needs to be unobtrusive as it shares aisles with shoppers. A delivery robot, whether traveling to your hotel room, home, or place of business, has to be a convenient size for you to retrieve the contents.

This track looks at the transition of the industrial robot to a real robo-buddy who can be the integrated co-worker robot (f.ex. KUKA flexFELLOW, ROBOFOOT – Robofoot website ) or cobot on the factory floor, or household robot (like JIBO) robot carer (like Nao or Pepper- Aldebaran or Twendy One –Waseda University, or the networked MBOT from MonarCH), search and rescue and retrieval robot, shelf picking robot, cleaning robot, inspection and monitoring robot, space explorer, Mission robot. In short a robotic assistant to the human operator.

The future multi-agent robots will use as their operating systems either ROS (www-ros-org, Open Source software), RoboBrain.me, Deepglint or RoboHow (www.robohow.eu)

We also look at innovative robot designs like hydrogel robots.

Submit your proposal in robot technology here

Of UAV’s, Robot Vehicles and Sentient Drones

As computing power and computer networking increases simple UAV and UCAV’s will become more sentient intelligent guided vehicles being able to operate as standalone (f.ex. The RADHAR (Robotic ADaptation to Humans Adapting to Robots) self driving wheelchair) or in swarm to perform predestined tasks under the guidance of a human operator using obstacle avoidance software. These will take the form of remotely operated helicopters, planes, trains, ships and space ships.

Examples of robot vehicles are: Savioke’s Relay, also called the Botlr, is designed for service use in hotels; Starship Technologies, six-wheeled urban delivery robots; Knightscope, Inc. ‘s K3 and K5. The company refers to them as Autonomous Data Machines and Simbe Robotics’s Tally, described as an automated shelf auditing and analytics solution.

Submit your proposal in drones here

AI you can drive my Car

In future your car will become your mobile office and personal computing station being able to drive autonomously from a to b constantly communicating its position to the other cars and surroundings in order to improve traffic flow, inter-traffic communication and situational awareness.

This track covers the embedded systems available in self-driving car design: Look-Ahead Radar – LIDAR, Automatic Braking, Blind Spot Detection, Obstacle Avoidance, Autonomous Environment Mapping using Deepglint AI Software, Steer by Wire, LEDS, Lane Departure Warning, Conversational Voice Recognition, Drowsiness Sensors, HMI Cockpit Controllers, Split Displays, In-car Entertainment Systems, Glass Cockpit/HUD Displays, Smart Navigation, Networking, Integrated Sensors, Vehicle-to-Vehicle (V2V) Communication.

Submit your proposal in self driving cars here

Farming in the Sky with Robots

This track looks at vertical farming or robotic vegetable factories in urban areas using Farmbot Io f.ex., and robot farming in the fields to increase food production in rural areas, which are depopulating. This by using methods, like those tackled by the MARS project, which stands for Mobile Agricultural Robot Swarm. The idea behind the Mars Projects is that by deploying many simpler and smaller robots, they hope to make their farm-solutions safer, more reliable, and productive, while avoiding soil compaction that comes with larger robots navigating the fields. A swarm could also provide continuous operation, by having robots take turns charging or undergoing maintenance. F.ex. Australian ranchers are turning to farm robots to manage livestock in the Outback

Submit your proposal in mechanised farming here

From Minority Report to Robocop

Predictive policing, Analytic Intelligence, Video Intelligence, Dazzlers, Crowd control simulations, Facial Recognition and Face Verification based on 3D Modeling for more accurate Facial Recognition on the move using enhanced glasses, security systems (biometric and other data-processing techniques like Teradeep which is a real-time object classifier (enhanced reality), 3VR VIP License Plate Recognition, Full Body Scanners, Surveillance and Security Robots. All of the aforementioned would help the government as both a live and forensic tool to police airports, train stations and large arenas for public safety, secure offices for access control and for identifying wanted individuals in public areas.

Submit your proposal in future policing here

Preparing the Military for the Future Virtual Battle Space

As the future battlefield becomes more lethal and unpredictable than ever, the military are always looking for that advantage in many different areas such as enhancing the soldiers’ survivability wearing for example the Tactical Assault Light Operator Suit (TALOS), the Future Warrior Combat Suit, which feature use of technologies such as nanotechnology, powered exoskeletons, and magnetorheological fluid-based body armor. Training him in a Virtual Reality Dome to assess his thinking in a Virtual Combat Environment.

Meanwhile combat vehicles become more electronically integrated, fielding reactive armour, cloaking devices, active denial systems and camouflage systems, laser weapons, electric guns and railguns. Supported by armed and surveillance drones on land, sea and in the air acting alone or as multidomain battle drone swarms, and mobile mule robots and sentry robots thereby creating a force multiplier for than the opposing force.

All of this managed within the confines of the Future Virtual Battle Space using for such technology as the augmented reality sandbox and learning machines; These Learning Machines will enhance human-machine collaboration (converging technology) , by using advanced computers and visualization to help humans make faster, better and more relevant decisions and by using cobots to alleviate human operators to finish complicated tasks; Assisted human operations, which means plugging every pilot, soldier, sailor and Marine into the battle network; Human-machine combat teaming: new ways in which manned and unmanned teams operate; and Networked-enabled autonomous weapons within a System Information Exploitation environment.

Submit your proposal in future military here

Reach for the Sky

As air travel is set to expand exponentially in future, design of aircraft will have to be drastically changed in order to comply with noise levels, address higher fuel efficiency, faster travel times and low-orbit space flights. This track looks at what might change in future aircraft creation based on innovative scifi-design.

Air Systems Simulation Modelling and Design (Airframe, Wing, Lift Coefficient, Parasitic Drag, Aircraft Stabilization, Aero-Acoustics and Vibration, Impact Dynamics, Flight Controls and Aerodynamics, Avionics, Fit Control, Landing Gear, Electric Steering Systems, Large Eddy Simulation), Control Surface Shaping, Active wing Morphing Control and Self-repair, Structures technology for future aerospace systems, Aerospace Vehicle Systems Technology (AVST), Aviation Safety Analysis Software within the Intelligent Synthesis Environment, Aviation Systems Capacity, Bio-nanotechnology simulation, Aerospace Propulsion and Power Combustion and Energy Conversion, Fluid Flow and Mass Transport behaviour in Engines, Plasma Based Flow Control, Actuators and Plasma Enhanced Combustion, Ultra Efficient Engine Technology, Fuel Cells, Supersonic and Hypersonic Craft Simulation, Ramjet Simulation, Aero-thermoelastic Effects in Hypersonic Vehicles, Micro Air Vehicles Simulation, Small Aircraft Transportation Systems, Quiet Aircraft and Noise Reduction Technology, Green Aviation, CICT Simulation, Vision-Based Autonomous Flight, Aircraft-UAV-UCAV networked flight simulation, Stealth and radar evasion technology, Thrust vectorization simulation. Applications for future flight (f.ex.. Super Jumbos, Air-Taxis, All-electric Aircraft, Scramjets, Flying Wings....), Low Orbit-Space Flight, Decreasing Systems Risk and Improving Reliability. Drone Flight Simulation.

Submit your proposal in aerospace here

To infinity and beyond

If as a species we wish to survive the only option is to become a space faring society. This track explores the different vehicles and technologies we will need to succeed the colonization of outer space.

Next generation launchers (f.ex future X-Pathfinder), reusable launch vehicles (RLV), Aerospace Vehicle Systems, Technology, Payload Launch Simulation, Aerospace Autonomous Operations, System studies for future space transport architectures, Rocket propulsion simulation, EM Drive, Space materials and structures, Space habitats, Aerothermodynamics, launcher health management systems, avionics and in-flight experimentation. Space Cryo Electronics, Innovative Concepts and Technologies for lunar and planet exploration (in-situ resource utilization, nuclear propulsion, 3D printed habitation, stretching nano-technology, modular architecture).

Submit your proposal in space technology here