ISC2009
Loughborough, United Kingdom
June 1-3, 2009
June 1-3, 2009
FIRST CALL FOR PAPERS
7th Annual
INDUSTRIAL SIMULATION CONFERENCE 2009
INDUSTRIAL SIMULATION CONFERENCE 2009
Organised by
The European Technology Institute
The European Technology Institute
and Sponsored by
EUROSIS
Loughborough University
EUROSIS
Loughborough University
Hosted by
Quality Hotel Lougborough
Quality Hotel Lougborough
Co-Sponsored by
ENSAIT-UPV
KFKI-Ghent University
ENSAIT-UPV
KFKI-Ghent University
Delft University of Technology
MOBIUS-CREAX
MOBIUS-CREAX
For latest information see:
http://www.eurosis.org/cms/?q=node/905
http://www.eurosis.org/cms/?q=node/905
AIM OF ISC'2009
The aim of the 7th annual Industrial Simulation Conference (ISC'2009, is to give a complete overview of this year's industrial simulation related research and to provide an annual status report on present day industrial simulation research within the European Community and the rest of the world in line with European industrial research projects.
With the integration of artificial intelligence, agents and other modelling techniques, simulation has become an effective and appropriate decision support tool in industry. The exchange of techniques and ideas among universities and industry, which support the integration of simulation in the everyday workplace, is the basic premise at the heart of ISC'2009 conference.
With the integration of artificial intelligence, agents and other modelling techniques, simulation has become an effective and appropriate decision support tool in industry. The exchange of techniques and ideas among universities and industry, which support the integration of simulation in the everyday workplace, is the basic premise at the heart of ISC'2009 conference.
The ISC'2009 conference consists of four major parts; the first part concerns itself with discrete event simulation methodology, the second and biggest part with industrial simulation applications, a third one with industrial themed workshops, and last but not least the fourth part, namely the poster sessions for students. The whole is then illustrated by an exhibition.
This year's conference will feature a number of new themes, which have been proposed by Loughborough University.
The methodologies section covers: Modelling and Analysis Methodologies, Languages and Tools, Artificial Intelligence, Knowledge Based Simulation, Virtual Reality, Synthetic Environments, Petri Nets and Performance Analysis related to industrial applications
MODELLING METHODOLOGY
Web Based Simulation, Optimization and Response Surfaces, Parallel and Distributed Systems, Virtual Worlds, Methods for Special Applications, Practice, Extensions, XML, Open Source, Model Development, Network Modeling, Distributed Simulation and Industry, Modeling Very Large Scale Systems, Aerospace Operations, Revising Simulations Components, Meta-Knowledge Simulation.
DISCRETE EVENT ANALYSIS METHODOLOGY
Advanced Input Modeling, Simulation Optimization, Cross Entropy, Output Analysis, Input Modeling, Simulation Optimization, Input Analysis, Difficult Queueing Problems, New Output Analysis.
DISCRETE SIMULATION LANGUAGES AND TOOLS
Discrete simulation languages; Object oriented modeling languages; UML and simulation; Model libraries and modularity; Component-oriented simulation; Special simulation tools and environments; Meta-models and automatic model generation; Graphical simulation environments and simulation software tools; Intelligent simulation environments; Database management of models and results; Java and Web enabled simulations, UML and OO Simulation.
AMBIENT INTELLIGENCE AND SIMULATION
Ambient Intelligence is an emerging research area that has received much attention in recent years, concerned with the implications of embedding computing devices into the environment, and how human and artificial agents can interact in such technological contexts. The infrastructure for ambient intelligence is coming on line, Computational resources are becoming cheaper, while ubiquitous network access has started to appear.
Different devices equipped with simple intelligence and the abilities to sense, communicate and act, will be unremarkable features of our world. Therefore, one takes the view that ambient intelligence is imminent and inevitable and it may be of great interest in simulation scenarios.
Different devices equipped with simple intelligence and the abilities to sense, communicate and act, will be unremarkable features of our world. Therefore, one takes the view that ambient intelligence is imminent and inevitable and it may be of great interest in simulation scenarios.
APPLICATIONS AREA
The application section covers: Automation, CAD/CAM/CAE, Defense Electronics, Design Automation, Simulation in industrial Design, Industrial Engineering, Industrial and Process Simulation, Manufacturing, Simulations, Logistics and Transport, Power Plants, Multibody Systems, Aerospace, etc..
SIMULATION IN MANUFACTURING
The goal of this track is to exchange ideas, experiences, and research results between practitioners and researchers. It shall offer the opportunity not only for presenting work done but also for discussing new challenges emerging in this area. It focuses on innovative applications of simulation in the field of production and operation management. State-of-the-art applications covering any part of the value adding chain and any aggregation level are encouraged. This track will show the efficient utilization of simulation techniques and hybrid approaches for the optimization of manufacturing processes.
This session covers: Computer Assisted Learning and Simulation Trainers, Customizing of ERP Systems using Simulation, Distributed Simulation Approaches, Hierarchical Simulation, Integrating Process Mapping and Simulation, Manufacturing Consulting, Manufacturing Controls, Model Integration Standards Optimization and Evaluation, Simulation Frameworks, Simulation of (Manufacturing) Processes in Virtual Enterprises, Virtual Factories, and Virtual Manufacturing Simulation Support Tools , Web-Based Workflow Modeling and Simulation , MRP systems; CAD; CAM; CIM; Process design; Process control; Embedded intelligent control systems; Scheduling; Automotive simulation; Robotics and automation. Manufacturing Applications Transportation and Material Handling, Best Modeling Methods, Integrating Simulation and Design, Manufacturing Modeling Architectures, Manufacturing Modeling Methods, Simulation of Manufacturing Operations, Optical Engineering and Thermofluids, Mechanotronics.
This session covers: Computer Assisted Learning and Simulation Trainers, Customizing of ERP Systems using Simulation, Distributed Simulation Approaches, Hierarchical Simulation, Integrating Process Mapping and Simulation, Manufacturing Consulting, Manufacturing Controls, Model Integration Standards Optimization and Evaluation, Simulation Frameworks, Simulation of (Manufacturing) Processes in Virtual Enterprises, Virtual Factories, and Virtual Manufacturing Simulation Support Tools , Web-Based Workflow Modeling and Simulation , MRP systems; CAD; CAM; CIM; Process design; Process control; Embedded intelligent control systems; Scheduling; Automotive simulation; Robotics and automation. Manufacturing Applications Transportation and Material Handling, Best Modeling Methods, Integrating Simulation and Design, Manufacturing Modeling Architectures, Manufacturing Modeling Methods, Simulation of Manufacturing Operations, Optical Engineering and Thermofluids, Mechanotronics.
STEEL MANUFACTURING SIMULATION
Steel manufacturing production validation, steel production planning, abrasive surface modelling, surface grinding, profiling and turning processes.
SIMULATION IN AUTOMOTIVE SYSTEMS
Automotive simulation of Car Design, car behaviour, vehicle driver interaction, collision tests, on board diagnostics, vision enhancement and collision warning systems, vehicle dynamics and simulation, off-road vehicle design and modelling, engineering propulsion controls simulation, power train and fluid systems simulation, hydrogen and electric engine simulation, homogeneous charge compression ignition, emissions control, brake simulation
RACE CAR SIMULATION
Aerodynamics simulation, Atmosphere simulation, Lift-Drag Simulation, Wind Tunnel Simulation, Flow Visualization, Computational Fluid Dynamics
SIMULATION IN ROBOTICS
Robot Systems
Application of Industrial Robots, Service Robots, Control Technology, Development of Mechatronic Products, Innovation Management. Sensor Simulation, Simulation of Natural Environments Simulation of Agent-Environment Interaction /Intelligent Agents, Neural Networks and Simulation, Simulation of Collective Behaviour and Emergent Phenomena, Simulation of Learning and Adaptation Processes, Assessment Criteria and Assessment Methods for Simulators, Quantitative and Qualitative Comparisons between Originals and their Simulations, Simulation of User-System Interaction. Simulating SLAM (Simultaneous Localisation and Mapping) in robotics.
Robots in Assembly Systems
Assembly Systems and Components, Processes Product Development and Design, Wiring Technology.
Robots in Technical Production Planning
Technical Production Planning, Device and Equipment Technology, Production processes and Sequences, Information Technology
Application of Industrial Robots, Service Robots, Control Technology, Development of Mechatronic Products, Innovation Management. Sensor Simulation, Simulation of Natural Environments Simulation of Agent-Environment Interaction /Intelligent Agents, Neural Networks and Simulation, Simulation of Collective Behaviour and Emergent Phenomena, Simulation of Learning and Adaptation Processes, Assessment Criteria and Assessment Methods for Simulators, Quantitative and Qualitative Comparisons between Originals and their Simulations, Simulation of User-System Interaction. Simulating SLAM (Simultaneous Localisation and Mapping) in robotics.
Robots in Assembly Systems
Assembly Systems and Components, Processes Product Development and Design, Wiring Technology.
Robots in Technical Production Planning
Technical Production Planning, Device and Equipment Technology, Production processes and Sequences, Information Technology
SIMULATION IN ELECTRONICS, COMPUTERS AND TELECOMMUNICATIONS
Modeling and simulation of analogue circuits; Modeling and simulation of digital circuits at switch and/or at logic level; Hardware accelerators for circuit-level simulation; Hardware accelerators for logic simulation; Distributed simulation of circuits, components, and systems; Modeling and simulation of computer systems; Fault simulation; Parallel and distributed systems; High-speed networks; Network simulation software; Computer and telecommunication systems; Telecommunication devices and systems; Intelligent telecommunication networks; ISDN; ATM communications.
SIMULATION IN ELECTRONICS MANUFACTURING
Semiconductor Manufacturing Simulation
Recently, the electronics industry has become the largest industry in the world. One important area of this industry is the manufacturing of integrated circuits (IC) on silicon wafers. Semiconductor wafer fabrication facilities (wafer fabs) are complex manufacturing systems that contain hundreds of machines and thousands of lots. Currently, it seems that the improvement of operational processes creates the best opportunity to realize necessary cost reductions. Therefore, the development of efficient planning and control strategies is highly desirable in the semiconductor domain.
In order to create, implement and test the required novel strategies, it is necessary to take new opportunities of information technology into account. Modelling and Simulation are widely accepted tools in planning and production control in wafer fabs because they are able to deal with the huge complexity of modern wafer fabs.
The aim of the session consists in collecting papers from both industry and academia that deal with interesting applications and new methodologies in modelling and simulation of manufacturing systems in the electronics industry.
Cleanroom Manufacturing
(Cleanroom suitability test, microsystem technology, cleaning technology, manufacturing technology for clean environments, information systems)
Manufacturing Technologies, Information Technology
(Information Processing, Metrology and Testing Technology, Production Methods, Rapid Prototyping)
Surface Engineering
(Development, optimisation and modelling of coating processes, integrated process development and management, production-orientated equipment, development, integration of coating processes into production, quality concepts for complex coating processes, surface characterization)
Coating Technology
Simulation Based Scheduling, (Supply Chain Planning Semiconductor Manufacturing, Maintenance and Repair, Scheduling and Control and Schedule Evaluation)
SIMULATION IN COMPUTER SCIENCE
Recently, the electronics industry has become the largest industry in the world. One important area of this industry is the manufacturing of integrated circuits (IC) on silicon wafers. Semiconductor wafer fabrication facilities (wafer fabs) are complex manufacturing systems that contain hundreds of machines and thousands of lots. Currently, it seems that the improvement of operational processes creates the best opportunity to realize necessary cost reductions. Therefore, the development of efficient planning and control strategies is highly desirable in the semiconductor domain.
In order to create, implement and test the required novel strategies, it is necessary to take new opportunities of information technology into account. Modelling and Simulation are widely accepted tools in planning and production control in wafer fabs because they are able to deal with the huge complexity of modern wafer fabs.
The aim of the session consists in collecting papers from both industry and academia that deal with interesting applications and new methodologies in modelling and simulation of manufacturing systems in the electronics industry.
Cleanroom Manufacturing
(Cleanroom suitability test, microsystem technology, cleaning technology, manufacturing technology for clean environments, information systems)
Manufacturing Technologies, Information Technology
(Information Processing, Metrology and Testing Technology, Production Methods, Rapid Prototyping)
Surface Engineering
(Development, optimisation and modelling of coating processes, integrated process development and management, production-orientated equipment, development, integration of coating processes into production, quality concepts for complex coating processes, surface characterization)
Coating Technology
Simulation Based Scheduling, (Supply Chain Planning Semiconductor Manufacturing, Maintenance and Repair, Scheduling and Control and Schedule Evaluation)
SIMULATION IN COMPUTER SCIENCE
Systems research, Operating systems, File System, Storage.
SIMULATION IN LOGISTICS, TRAFFIC, TRANSPORT, PORT, AIRPORT AND HOSPITAL LOGISTICS SIMULATION
Factory and Logistics Planning
Strategies and Concepts for Production and Logistics, Technical and Organizations Planning of Production and Logistics Systems, Value Stream Mapping, Integrated Factory and Logistics Planning, Innovative Planning Methods, tools and systems
Logistics: logistics supply chains, inbound logistics, materials management, Manufacturing Supply Chain Management, physical distribution, production planning and control, outbound and inbound logistics, Simulation of regional logistic systems, distribution centres, inventory management, warehousing decisions, materials management, handling and packaging, logistics information systems, information management in logistics systems, logistics network design and facility location, cost modelling, information systems (networked Manufacturing, Enterprise design and Control, etc…)
Factory and Logistics Planning
Strategies and Concepts for Production and Logistics, Technical and Organizations Planning of Production and Logistics Systems, Value Stream Mapping, Integrated Factory and Logistics Planning, Innovative Planning Methods, tools and systems
Logistics: logistics supply chains, inbound logistics, materials management, Manufacturing Supply Chain Management, physical distribution, production planning and control, outbound and inbound logistics, Simulation of regional logistic systems, distribution centres, inventory management, warehousing decisions, materials management, handling and packaging, logistics information systems, information management in logistics systems, logistics network design and facility location, cost modelling, information systems (networked Manufacturing, Enterprise design and Control, etc…)
Traffic: traffic flows, multi-modal systems, transit, transportation modes, urban city transport, transportation in logistics, transportation management, traffic demand, traffic control, traffic telematics, traffic performance, safety, macroscopic, mesoscopic and microscopic simulations;
Port Simulation (Bulk Terminals, Container Terminals, Harbour Services, Industrial Facilities, Navigation Lines, Multimodal Transports, Oil Terminals, Passenger Terminals, Railways, Ro-Ro Terminals, Ships and Platforms, Supply Chains and Warehouses, Harbour Management, Safety in Maritime Environments, Vessel Traffic Systems)
Airport Simulation: Airport logistics simulation, passenger traffic throughput simulation, Aircraft traffic and airport capacity optimization.
Hospital Logistics
Decision support systems in medicine (diagnosis, prognosis, therapeutic, treatment follow-up...) which are based on medical knowledge representation, ontologies and cooperation of different knowledge sources. Organisation of health care units (hospital, ...) which involves management, economics, law, deontology, ethics, social and information technology aspects...f ex. Patient waiting time simulation, Emergency evacuation simulation, Brancardage, hospital occupation simulation and optimization. Healthcare Networks, Modelling of Clinical Environments, Clinical Information Flows, Patient Flows in Hospitals, Wards Planning, Drugs Inventory Management, Logistics Flow, Long and Short Time Tables of Personnel, Utility and Case Analysis of Helicopter Usage, Information and Surveillance Systems.
Decision support systems in medicine (diagnosis, prognosis, therapeutic, treatment follow-up...) which are based on medical knowledge representation, ontologies and cooperation of different knowledge sources. Organisation of health care units (hospital, ...) which involves management, economics, law, deontology, ethics, social and information technology aspects...f ex. Patient waiting time simulation, Emergency evacuation simulation, Brancardage, hospital occupation simulation and optimization. Healthcare Networks, Modelling of Clinical Environments, Clinical Information Flows, Patient Flows in Hospitals, Wards Planning, Drugs Inventory Management, Logistics Flow, Long and Short Time Tables of Personnel, Utility and Case Analysis of Helicopter Usage, Information and Surveillance Systems.
Simulation in Biology, Medicine and Health Care Management
Health Care Management, Strategic Management & Resource Planning in Health Care, Operational Management in Health Care, Decision Support in Health Care, Disease Management and Emergency and Disaster Organization, Case Studies: Success Stories and Failures, Medical Informatics, Medical Instruments and Devices, Fluid Flow and Transport Processes in Biological Systems, Drug Delivery Systems.
Health Care Management, Strategic Management & Resource Planning in Health Care, Operational Management in Health Care, Decision Support in Health Care, Disease Management and Emergency and Disaster Organization, Case Studies: Success Stories and Failures, Medical Informatics, Medical Instruments and Devices, Fluid Flow and Transport Processes in Biological Systems, Drug Delivery Systems.
Call Centre and Supermarket Logistics
Using stochastic models to plan call center operations, schedule call center staff efficiently, and analyze projected performance is not a new phenomenon. However, several factors have recently conspired to increase demand for call center simulation analysis.
Increasing complexity in call traffic, coupled with the almost ubiquitous use of Skill-Based Routing. Rapid change in operations due to increased merger and acquisition activity, business volatility, outsourcing options, and multiple customer channels (inbound phone, outbound phone, email,web, chat) to support. Cheaper, faster desktop computing, combined with specialized call center simulation applications that are now commercially available.
Using stochastic models to plan call center operations, schedule call center staff efficiently, and analyze projected performance is not a new phenomenon. However, several factors have recently conspired to increase demand for call center simulation analysis.
Increasing complexity in call traffic, coupled with the almost ubiquitous use of Skill-Based Routing. Rapid change in operations due to increased merger and acquisition activity, business volatility, outsourcing options, and multiple customer channels (inbound phone, outbound phone, email,web, chat) to support. Cheaper, faster desktop computing, combined with specialized call center simulation applications that are now commercially available.
COMPLEX SYSTEMS MODELLING
(- Design and Simulation, - Process Control and Optimisation, - Information Technology Systems, - Space and Airborne Systems - Communication Networks, - Cybernetics and Control, - Building Engineering and Urban Infrastructures - Nonlinear Systems) Integration of AI Techniques and Simulation, Knowledge Elicitation and Representation for Complex Models, Drawing Understanding and Pattern Recognition, Machine Learning, Neural Networks and Genetic Algorithms, Simulation in Robotics and Automation, Continuous Simulation of Technical Processes, Fuzzy Models in Simulation, Wireless Communication, Mobile Communication Networks, Satellite Communication, LAN and WAN Protocols, Simulation of Switching Equipment, Design and Coding of Communication Handling Software
SIMULATION IN AEROSPACE
Low Cost Simulation Environments, Rapid Simulation Prototyping, Simulation Based Design, Simulation of Satellite Navigation, systems (space segment and terrestrial applications) simulation of satellite constellations, real-time hardware-in-the-loop nab-in-the-loop simulation, flight simulation, distributed interactive simulation and HLA standards, Graphical simulation (virtual environments and virtual reality) applied to aerospace. Modelling and Simulation standards, rationalisation efforts, repositories and reuse. Simulation in support of system specification and design, simulation in support of system assembly, integration and testing. Simulation in support of flight software validation, structural dynamics of Pylon Store Coupling, Flutter Prediction, volterra kernels to model nonlinear aero-elasticity.
Aircraft Simulation:
Air Systems Simulation Modelling and Design (Airframe, Wing, Lift Coefficient, Parasitic Drag, Aircraft Stabilization, Aero-Acoustics and Vibration, Impact Dynamics, Flight Controls and Aerodynamics, Avionics, Fit Control, Landing Gear, Large Eddy Simulation), Control Surface Shaping, Active wing Morphing Control and Self-repair, Structures technology for future aerospace systems, Aerospace Vehicle Systems Technology (AVST), Aviation Safety Analysis Software within the Intelligent Synthesis Environment, Aviation Systems Capacity, Bio-nanotechnology simulation, Aerospace Propulsion and Power (Combustion and Energy Conversion, Fluid Flow and Mass Transport behaviour in Engines, Ultra Efficient Engine Technology, Fuel Cells, Hypersonic Craft Simulation, Ramjet Simulation, Aerothermoelastic Effects in Hypersonic Vehicles, Micro Air Vehicles Simulation, Small Aircraft Transportation Systems, Quiet Aircraft and Noise Reduction Technology, CICT Simulation, Vision-Based Autonomous Flight, Aircraft-UAV-UCAV networked flight simulation , Stealth and radar evasion technology, Thrust vectorization simulation. Applications for future flight (f.ex.. Super Jumbos, Air-Taxis, All-electric Aircraft, Scramjets, Flying Wings....), Decreasing Systems Risk and Improving Reliablity
Space flight Simulation:
Next generation launchers (f.ex future X-Pathfinder), reusable launch vehicles (RLV), Aerospace Vehicle Systems, Technology, Payload Launch Simulation, Aerospace Autonomous Operations, System studies for future space transport architectures, Rocket propulsion simulation, Space materials and structures, Aerothermodynamics, launcher health management systems, avionics and in-flight experimentation. Space Cryo Electronics, Innovative Concepts and Technologies for lunar exploration (in-situ resource utilization, nuclear propulsion, habitation, nano-technology, modular architecture.
Aircraft Simulation:
Air Systems Simulation Modelling and Design (Airframe, Wing, Lift Coefficient, Parasitic Drag, Aircraft Stabilization, Aero-Acoustics and Vibration, Impact Dynamics, Flight Controls and Aerodynamics, Avionics, Fit Control, Landing Gear, Large Eddy Simulation), Control Surface Shaping, Active wing Morphing Control and Self-repair, Structures technology for future aerospace systems, Aerospace Vehicle Systems Technology (AVST), Aviation Safety Analysis Software within the Intelligent Synthesis Environment, Aviation Systems Capacity, Bio-nanotechnology simulation, Aerospace Propulsion and Power (Combustion and Energy Conversion, Fluid Flow and Mass Transport behaviour in Engines, Ultra Efficient Engine Technology, Fuel Cells, Hypersonic Craft Simulation, Ramjet Simulation, Aerothermoelastic Effects in Hypersonic Vehicles, Micro Air Vehicles Simulation, Small Aircraft Transportation Systems, Quiet Aircraft and Noise Reduction Technology, CICT Simulation, Vision-Based Autonomous Flight, Aircraft-UAV-UCAV networked flight simulation , Stealth and radar evasion technology, Thrust vectorization simulation. Applications for future flight (f.ex.. Super Jumbos, Air-Taxis, All-electric Aircraft, Scramjets, Flying Wings....), Decreasing Systems Risk and Improving Reliablity
Space flight Simulation:
Next generation launchers (f.ex future X-Pathfinder), reusable launch vehicles (RLV), Aerospace Vehicle Systems, Technology, Payload Launch Simulation, Aerospace Autonomous Operations, System studies for future space transport architectures, Rocket propulsion simulation, Space materials and structures, Aerothermodynamics, launcher health management systems, avionics and in-flight experimentation. Space Cryo Electronics, Innovative Concepts and Technologies for lunar exploration (in-situ resource utilization, nuclear propulsion, habitation, nano-technology, modular architecture.
MARINE SIMULATION
Simulation in Ship design, ship propulsion unit simulation, simulation for high speed design, water turbulence simulation, submarine simulation, control of supercavitating underwater vehicles. Underwater detection systems simulation, Ship Handling Simulation, Navigation and Radar Simulation, Bridge Team Management Simulation, Engine Room Simulation, Liquid Cargo Handling Simulation, Crane Simulation. Maritime Simulator Standards
SIMULATION IN INDUSTRIAL PRODUCT DESIGN
SIMULATION IN INDUSTRIAL PRODUCT DESIGN
Simulation of product design; Planning and control; Reconfigurable responsive computing and process re-engineering; Integrated product and process modelling; Modelling and simulation in virtual global enterprises; Simulation based design; Qualitative and fuzzy modelling and simulation in engineering design; Modal logistics in systems design; Simulation in support of system specification and design.
SIMULATION IN ENGINEERING PROCESSES
The Modelling in Engineering Processes track focuses on the application of simulation in mechanical and structural engineering. Oscilations and Waves, Stability and Control, Computational Mechanics, Numerical Analysis, Mathematical Methods in Engineering Sciences, Optimization Advanced simulation of dynamic systems, Simulation-based design, Qualitative modelling and simulation in engineering, Fuzzy modelling and simulation, Evolutionary synthesis and evolutionary methods in design, Rapid prototyping, CASE systems in engineering design, Modal Logic systems in design, Simulation in support of system specification and design, Construction Engineering and Project Management
SIMULATION IN CIVIL AND BUILDING ENGINEERING
Construction Technologies, Flooding and Erosion, Infrastructure Engineering, Measurement and Control of Building Performance, Solid Waste Management, Subsurface flow and transport and Water Supplies.
SIMULATION IN ENERGY AND POWER SYSTEMS
Simulators: Real-Time simulation methods, GUI, Advanced modelling tools, Trainees' performance evaluation, Simulator Projects Simulation Studies: Simulation during design, Safety and environmental hazard estimation, Production optimisation. Methodology: Real-time simulation and visualisation tools, Parallel and distributed simulation, Fossil Fuel and Nuclear Energy Simulation, Solar Power Simulation, Wind turbine simulation, Wave Energy Simulation
SIMULATION IN MULTIBODY SYSTEMS
General: FE-Methods and Modelling of Flexible Bodies, Non-holonomic Systems and Geometrical Concepts in Multibody Dynamics, Numerical Aspects of Multibody Dynamics , Optimization and Control of Mechanisms , Articulated and Telescopic Multibody Systems, Air, Land and Sea Multibody Systems Applications
Special Sessions on: Multibody Systems in Space: Flexible Body Systems, Orbital Injection, Satellite Injection, Rendezvous and Docking of Spacecraft, Simulation of Space Station Construction and Assembly
Special Sessions on: Multibody Systems in Space: Flexible Body Systems, Orbital Injection, Satellite Injection, Rendezvous and Docking of Spacecraft, Simulation of Space Station Construction and Assembly
SIMULATION IN CHEMICAL AND PETROLEUM ENGINEERING AND THE MINING INDUSTRY
Adsorption processes, Colloidal processes, Control and Optimization Methods in Chemical Engineering, Crystallization processes, Electrochemical processes,Ion Exchange, Membrane Seperation, Micro-fluidics in Chemical processes, Multiphase Reactors, Particle Technology, Polymerisation Reactions, Scale up in Chemical Processes and Fuel Cells.
Simulation of Chemical Plants, Flow simulation, Plant control systems, network simulation, geological simulations, drilling simulations, oil transport simulations, mining simulations.
Adsorption processes, Colloidal processes, Control and Optimization Methods in Chemical Engineering, Crystallization processes, Electrochemical processes,Ion Exchange, Membrane Seperation, Micro-fluidics in Chemical processes, Multiphase Reactors, Particle Technology, Polymerisation Reactions, Scale up in Chemical Processes and Fuel Cells.
Simulation of Chemical Plants, Flow simulation, Plant control systems, network simulation, geological simulations, drilling simulations, oil transport simulations, mining simulations.
SIMULATION IN MILITARY AND DEFENSE
Simulation and Visualization (2D and 3D visualization of simulations). Advanced concepts and Requirements (simulation of new concepts, requirements development, predicted impacts of technology integration, intelligent systems simulation). Military Entertainment Convergence (wargaming, serious games). Research, Development and Acquisition (Design, development and acquisition for new weapons systems and equipment, Simulation and Modeling for acquisition, requirements, and training (SMART), Simulation-based acquisition). Training, Excercises and Military Operations (simulation in training, simulator/exercise Integration and Management, Mission Planning and Rehearsal, Embedded Training, Assessment. Physical Modelling and Effects (Lethality, vulnerability and survivability, impact and penetration modelling, computational fluid and molecular dynamics, structural and solid mechanics modelling, ballistics and propellant simulation). Entity and System Modelling and Behaviours (human performance modelling, entity behaviours, computer generated forces, agent-based combat modelling, flock modelling and behaviour). Domains (sea, Land, Air and Space (synthetic environments (f ex.DAWARS, JWARS), virtual realities, surface and sub-surface warfare, unmanned robotic land, sea and aerial vehicle simulation (UAV, UCAV), avionics, flight control, flight simulation, simulation and control for spacecraft). Operations, Command and Control and Interoperability (battle field, battle theatre simulation, simulation during operations, CAI simulation, counterforce operations, airspace management, campaign analysis). Military Networking (network modelling and simulation, network centric warfare, information assurance modelling and simulation, simulations and the Global Information Grid). Terrain Recognition and Analysis Simulation Software, Image Analysis and Image Recognition, Asymmetric Warfare and threats.
VERIFICATION, VALIDATION AND ACCREDITATION
The term validation is applied to those processes, which seek to determine whether or not a simulation is correct with respect to the "real" system. More prosaically, validation is concerned with the question "Are we building the right system?". Verification, on the other hand, seeks to answer the question "Are we building the system right?"
This track is interested in simulation validation methodologies: methodologies to support the process of constructing a simulation model and then aiding the validation of this model to the "real" system. These system models can be discrete, continuous or hybrid. Application areas range from information systems to engineering and scientific systems. Relevant parameters include performance, properties given by formal or informal requirements, exception handling etc. In this conference track, contributions from all areas of simulation and validation are solicited. Topics include, but are not limited to those given below.
VV&A methodology (effective VV&A, VV&A planning, confidence levels, risk estimation, organisation, documentation, standards, cost estimation, technique application, result presentation, subject matter expert (SME) selection, formal model specification, fidelity, automation potential), VV&A technology (documentation, CASE-tools, cross checking, requirements specification, knowledge based systems, configuration management, tool overview, simulation environments)
SIMULATION AND TRAINING
Highly skilled staff is an essential prerequisite for the safe and effective operation of industrial production systems. Simulation-based training plays an increasingly important role in qualification of plant personnel. In specific sectors such as aerospace or power stations, training simulators have already been successfully employed for many years. Latest developments in industrial information technology as well as the introduction of virtual product and process engineering provide a new technological basis for the cost-effective implementation of training simulators. Therefore, in near future the general spread of these technology in a variety of industrial sectors and applications is expected. Today ´s best practice, latest developments, and future concepts of simulation-based training in industry will be presented.
Topics
- Training simulator technology
- Scenarios and procedures for operator training
- Modelling approaches, tools and virtual environments for training
- e-Training in distributed environments
- HMI and cognitive performance
- Certification and standardisation issues
- Industrial applications and best practice
- Requirements on R&D
This track is interested in simulation validation methodologies: methodologies to support the process of constructing a simulation model and then aiding the validation of this model to the "real" system. These system models can be discrete, continuous or hybrid. Application areas range from information systems to engineering and scientific systems. Relevant parameters include performance, properties given by formal or informal requirements, exception handling etc. In this conference track, contributions from all areas of simulation and validation are solicited. Topics include, but are not limited to those given below.
VV&A methodology (effective VV&A, VV&A planning, confidence levels, risk estimation, organisation, documentation, standards, cost estimation, technique application, result presentation, subject matter expert (SME) selection, formal model specification, fidelity, automation potential), VV&A technology (documentation, CASE-tools, cross checking, requirements specification, knowledge based systems, configuration management, tool overview, simulation environments)
SIMULATION AND TRAINING
Highly skilled staff is an essential prerequisite for the safe and effective operation of industrial production systems. Simulation-based training plays an increasingly important role in qualification of plant personnel. In specific sectors such as aerospace or power stations, training simulators have already been successfully employed for many years. Latest developments in industrial information technology as well as the introduction of virtual product and process engineering provide a new technological basis for the cost-effective implementation of training simulators. Therefore, in near future the general spread of these technology in a variety of industrial sectors and applications is expected. Today ´s best practice, latest developments, and future concepts of simulation-based training in industry will be presented.
Topics
- Training simulator technology
- Scenarios and procedures for operator training
- Modelling approaches, tools and virtual environments for training
- e-Training in distributed environments
- HMI and cognitive performance
- Certification and standardisation issues
- Industrial applications and best practice
- Requirements on R&D
VIRTUAL REALITY AND GRAPHICAL SIMULATIONS IN INDUSTRIAL APPLICATIONS
Virtual reality and computer graphics simulations applied to industrial applications.
THE FUTURE OF INDUSTRIAL SIMULATION ROUNDTABLE
Simulation Standards, Future of Simulation Software, What's Virtually Possible, Real-Time Control, Equipment Interface, Supply Chain Opportunities, Customer Focus, Making Simulation relevant
WORKSHOPS
WORKSHOP ON MODELLING AND SIMULATION IN THE TEXTILE INDUSTRY
Textile process simulation : Modelling and simulation in clothing, dyeing and finishing process simulation, production units simulation, textile logistics, supply chain modelling, spinning mill, spinning simulation, sales forecasting, weaving and knitting simulation…
Textile products and materials simulations : Textile products simulation and textile chemistry : composite materials, dynamical behaviour of textile structures, fireproofing simulation, flame retardant products, body morphology, new textiles properties evaluation by simulation, smart and communicating clothes, chemical processes simulation in textile, virtual clothing,…
WORKSHOP ON MODELLING AND SIMULATION IN THE TEXTILE INDUSTRY
Textile process simulation : Modelling and simulation in clothing, dyeing and finishing process simulation, production units simulation, textile logistics, supply chain modelling, spinning mill, spinning simulation, sales forecasting, weaving and knitting simulation…
Textile products and materials simulations : Textile products simulation and textile chemistry : composite materials, dynamical behaviour of textile structures, fireproofing simulation, flame retardant products, body morphology, new textiles properties evaluation by simulation, smart and communicating clothes, chemical processes simulation in textile, virtual clothing,…
SIMULATION AND MODELLING IN SPORTS ENGINEERING
The workshop will cover simulation and modelling in:
* Behaviour, ergonomics, biomechanics
* Physical Activity and Well-Being
* Performance Enhancement and Sports Engineering
* Sports Dynamics
* Applications such as:
o Wearables (intelligent clothes, bioshirts and footwear)
o Mobile Motion Tracking Services
o Sensor Networks
o Training Equipment (instruments for prestation monitoring and
improvement)
o Sport stimulation (technological innovations)
o Bicycle, Racing Car and Sailing Yacht Design
* Behaviour, ergonomics, biomechanics
* Physical Activity and Well-Being
* Performance Enhancement and Sports Engineering
* Sports Dynamics
* Applications such as:
o Wearables (intelligent clothes, bioshirts and footwear)
o Mobile Motion Tracking Services
o Sensor Networks
o Training Equipment (instruments for prestation monitoring and
improvement)
o Sport stimulation (technological innovations)
o Bicycle, Racing Car and Sailing Yacht Design
WORKSHOP ON INTELLIGENT TRANSPORT SYSTEMS
A broad range of diverse technologies, known collectively as intelligent transportation systems (ITS), holds the answer to many of our transportation problems. ITS is comprised of a number of technologies, including information processing, communications, control, and electronics. Joining these technologies to our transportation system will save lives, time and money. ITS enables people and goods to move more safely and efficiently through a state-of-the-art, intermodal transportation system. Simulating this aspect of transportation is one of the major challenges of our time.
WORKSHOP NANOSIM
Simulation in long-term interdisciplinary research, simulation of supramolecular and macromolecular architectures, simulation in nanobiotechnologies, simulation of nanometric scale engineering techniques for creating materials and components, simulation of manipulator devices, simulation in nano applications related to chemicals and energy. Simulation of knowledge based multifunctional Materials. Simulation of nano production processes and methods.
AUGMENTED REALITY AND PERVASIVE SYSTEMS IN FACTORIES
"Pervasive systems are likely to become the next programming paradigm for the information society. They will allow us to implement the augmented reality and the ubiquitous computing ideas. Pervasive systems in factories enable operators and machines to interact on a common virtual level which is also capable of simulating the real part. Among other related topics, this track includes: ubiquitous computing, augmented reality, mixed reality, wireless networks, hybrid systems, simulation models, human-computer interaction, artificial intelligence, security, scalability, fault tolerance, smart devices, and pervasive services"
SIMULATION IN LEAN MANUFACTURING
Simulation has become a powerful tool to help manufacturers streamline their production and output in order to more rapidly react and play to the everchanging market place while reducing costs at every step. Presentations are solicited that cover part or the whole of this lean production process such as simulation in: Work Standardization, 5S Workplace Organization, Visual Controls, Batch Size Reduction, Points of Use Storage, Quality at the Source, Workflow Practice, Improved Information and Product Flow, Cellular Manufacturing, Pull & Synchronous Scheduling, Six Sigma & Total Quality, Rapid Setup, Work Teams for Cell Management & Process Improvement, Simplified scheduling and Kanban inventory management
CONFERENCE KEYNOTE
The keynote for the ISC2009 will be announced later
TUTORIALS
Tutorials can be proposed in the following three categories:
T1- Introductory tutorials
T2- State of the Art Tutorials
T3- Software and Modelware Tutorials
Tutorial proposals should be emailed to Philippe.Geril@eurosis.org
T1- Introductory tutorials
T2- State of the Art Tutorials
T3- Software and Modelware Tutorials
Tutorial proposals should be emailed to Philippe.Geril@eurosis.org
POSTER SESSION
The poster session only features work in progress. Next to the actual poster presentation, these submissions also feature as short papers in the Proceedings.
STUDENTS SESSION
This session is for students who want to present their work in progress or part of their doctoral thesis as a paper. Student papers are denoted by the fact that only the name of the student appears on the paper as an author. They are published as short papers in the Proceedings.
DIVERSE ACTIVITIES
For demonstrations or video sessions, please contact Philippe Geril. Special session will be set up for vendor presentations in co-ordination with the scientific program. User Group meetings for simulation languages and tools can be organised during the conference.
If you would like to arrange a meeting, please contact the Conference Chairs. We will be happy to provide a meeting room and other necessary equipment.
Partners for projects session(s) will be organised by EUROSIS to give potential project teams or individuals the opportunity to present their research in order to link up with fellow researchers for future research projects. Those wishing to participate in this session need to send a proposal to Philippe Geril.
If you would like to arrange a meeting, please contact the Conference Chairs. We will be happy to provide a meeting room and other necessary equipment.
Partners for projects session(s) will be organised by EUROSIS to give potential project teams or individuals the opportunity to present their research in order to link up with fellow researchers for future research projects. Those wishing to participate in this session need to send a proposal to Philippe Geril.
EXHIBITION
A special software exhibition will be held during the conference focused on industrial simulation tools. For more information please contact EUROSIS for further details. Email: Philippe.Geril@eurosis.org
DEADLINES AND REQUIREMENTS
Send all submissions in an ELECTRONIC FORM ONLY in Microsoft Word format, PDF or Postscript format indicating the designated track and type of submission (full paper or an extended abstract) to EUROSIS (Philippe.Geril@eurosis.org).
Please provide your name, affiliation, full mailing address, telephone / fax number and Email address on all submissions as well. For submissions please put in the subject of your Email the following indications: ISC2009 and designated track or USE THE ABSTRACT
SUBMISSION SITE OR ELECTRONIC SUBMISSION PAGE.
Only original papers, which have not been published elsewhere, will be accepted for publication
Please provide your name, affiliation, full mailing address, telephone / fax number and Email address on all submissions as well. For submissions please put in the subject of your Email the following indications: ISC2009 and designated track or USE THE ABSTRACT
SUBMISSION SITE OR ELECTRONIC SUBMISSION PAGE.
Only original papers, which have not been published elsewhere, will be accepted for publication
REGISTRATION FEES
Registration Fees
Author EUROSIS Other
Members Participants
Pre-reg before 495 EURO 495 EURO 545 EURO
May.15th 2009
Registration after Pre-Reg 545 EURO 555 EURO
May 15th 2009 required
The registration fee includes one copy of the Conference Proceedings, coffee and tea during the breaks, all lunches, a welcome cocktail, a conference dinner and a visit to the
national space centre (www.findmeaconference.com/nationalspacecentre)
Author EUROSIS Other
Members Participants
Pre-reg before 495 EURO 495 EURO 545 EURO
May.15th 2009
Registration after Pre-Reg 545 EURO 555 EURO
May 15th 2009 required
The registration fee includes one copy of the Conference Proceedings, coffee and tea during the breaks, all lunches, a welcome cocktail, a conference dinner and a visit to the
national space centre (www.findmeaconference.com/nationalspacecentre)
PAPER SUBMISSION TYPES
FULL PAPER (including abstract, conclusions, diagrams, references) During review,the submitted full papers can be accepted as a regular 5 page paper. If excellent,full papers can be accepted by the program committee as an extended (8-page) paper.
Each submission will be reviewed by at least three members of the International Program Committee.
Each submission will be reviewed by at least three members of the International Program Committee.
EXTENDED ABSTRACT (at least five pages)
Participants may also submit a 5 page extended abstract for a regular (5 pages) or short (3 pages) paper or poster, which will be reviewed by the International Program Committee. All accepted papers will be published in the ISC'2009 Conference Proceedings.
Participants may also submit a 5 page extended abstract for a regular (5 pages) or short (3 pages) paper or poster, which will be reviewed by the International Program Committee. All accepted papers will be published in the ISC'2009 Conference Proceedings.
SHORT ABSTRACT (at least three pages)
Participants may also submit a 3 page abstract for a short paper or poster, which will be reviewed by the International Program Committee. All accepted papers will be published in the ISC'2009 Conference Proceedings.
Participants may also submit a 3 page abstract for a short paper or poster, which will be reviewed by the International Program Committee. All accepted papers will be published in the ISC'2009 Conference Proceedings.
ONE PAGE ABSTRACTS ARE NOT ACCEPTED.
CORRESPONDENCE ADDRESS
Philippe Geril
EUROSISE-ETI
Greenbridge NV
Wetenschapspark 1
Plassendale 1
B-8400 Ostend, Belgium
Tel: +32 59 255.330
Fax: + 32 59.255.339
Email: philippe.geril@eurosis.org
OUTSTANDING PAPER AWARD
Philippe Geril
EUROSISE-ETI
Greenbridge NV
Wetenschapspark 1
Plassendale 1
B-8400 Ostend, Belgium
Tel: +32 59 255.330
Fax: + 32 59.255.339
Email: philippe.geril@eurosis.org
OUTSTANDING PAPER AWARD
The 2009 Industrial Simulation Conference Committee will select the Outstanding Paper of the Conference. The author of this paper will be awarded a free registration for a EUROSIS conference. Only papers SUBMITTED AS FULL papers will be eligible for the Outstanding Paper Award.
LANGUAGE
The official conference language for all papers and presentations is English.
LANGUAGE
The official conference language for all papers and presentations is English.
IMPORTANT DEADLINES
EARLY SUBMISSION DEADLINE JANUARY 25TH 2009
SUBMISSION DEADLINE FEBRUARY 20TH, 2009
February 20, 2009:
Submit contributed full-papers
(5 to 8 proceedings pages) not previously published. These submissions, when accepted will be published as regular or extended papers, depending on their quality.
Submit extended abstracts (5 abstract pages) or short papers (3 abstract pages), reports of industrial projects and summaries of posters. These submissions, when accepted, will be published as regular, of up to 5 proceedings page papers.
Submit one -to -three page proposals to present tutorials, to organise and chair panel sessions, to organise user meetings, vendor sessions or to exhibit software
Submit contributed full-papers
(5 to 8 proceedings pages) not previously published. These submissions, when accepted will be published as regular or extended papers, depending on their quality.
Submit extended abstracts (5 abstract pages) or short papers (3 abstract pages), reports of industrial projects and summaries of posters. These submissions, when accepted, will be published as regular, of up to 5 proceedings page papers.
Submit one -to -three page proposals to present tutorials, to organise and chair panel sessions, to organise user meetings, vendor sessions or to exhibit software
February 20, 2009:
Submit abstracts for student and poster session
Submit abstracts for student and poster session
LATE PAPER SUBMISSION MARCH 15TH,
2009
APRIL 1, 2009:
Notification of Acceptance or Rejection
APRIL 1, 2009:
Notification of Acceptance or Rejection
MAY 5, 2009:
Authors provide camera-ready manuscript
Authors provide camera-ready manuscript
JUNE 1-3, 2009:
Conference
Conference
VENUE: Quality Hotel Loughborough
http://www.qualityhotelloughborough.co.uk/
REPLY CARD
First Name:
Surname:
Occupation and/or Title:
Affiliation:
Mailing Address
Zip code:
City:
Country.
Telephone:
Fax:
E-Mail:
Yes, I intend to attend the ISC'2009:
[ ] Presenting a paper, by submitting a full paper
[ ] Presenting a short paper (by submitting an extended abstract)
[ ] Participating in the industrial program
[ ] Organizing a vendor session
[ ] Proposing a panel discussion (please mention names of panelists)
[ ] Contributing to the exhibition
[ ] Without presenting a paper
The provisional title of my paper / exhibited tool is:
With the following highlights:
The paper belongs to the category (please tick only one):
The provisional title of my paper / exhibited tool is:
With the following highlights:
The paper belongs to the category (please tick only one):
[ ] Modelling Methodology
[ ] Analysis Methodology
[ ] Ambient intelligence and Simulation
[ ] Discrete Simulation Languages and Tools
[ ] Simulation in Manufacturing
[ ] Simulation in Steel Manufacturing
[ ] Simulation in Automotive Systems
[ ] Simulation in Robotics
[ ] Simulation in Electronics, Computers and Telecommunications
[ ] Simulation in Electronics Manufacturing
[ ] Simulation in Computer Science
[ ] Simulation in Logistics, Traffic and Transport Simulation
[ ] Simulation in Harbour and Airport Logistics
[ ] Hospital Logistics and Health Care Simulation
[ ] Call Centre Simulation
[ ] Complex Systems Modelling
[ ] Simulation in Aerospace
[ ] Marine Simulation
[ ] Simulation in Industrial and Product Design
[ ] Simulation in Engineering Processes
[ ] Simulation in Civil and Building Engineering
[ ] Simulation in Energy and Power Systems
[ ] Simulation in Multibody Systems
[ ] Simulation in Chemical and Petroleum Engineering
[ ] Simulation in Military and Defense
[ ] Verification, Validation and Accreditation
[ ] Simulation and Training
[ ] Virtual Reality and Graphical Simulations in Industrial Applications
[ ] The Future of Simulation Roundtable
[ ] Workshop on Modelling and Simulation in the Textile Industry
[ ] Simulation and Modelling in Sports Engineering
[ ] Workshop on Intelligent Transport Systems
[ ] Workshop NANOSIM
[ ] Augmented reality and Pervasive Systems in Factories
[ ] Lean Manufacturing Simulation
[ ] Tutorials
[ ] Exhibition
[ ] Poster session
[ ] Student Session
Other colleague(s) interested in the topics of the conference is/are:
Name:
Address:
Name:
Address:
Other colleague(s) interested in the topics of the conference is/are:
Name:
Address:
Name:
Address:
If you would like to receive more information about EUROSIS and its activities,
please tick the following box:
please tick the following box:
[ ] YES, I would like to know more about EUROSIS
[ ] NO, please remove me from your database.
Please send or fax this card immediately to: (fax: +32.59.255.339)
Philippe Geril
EUROSIS-ETI
Greenbridge NV
Wetenschapspark 1, Plassendale 1, B-8400 Ostend
Belgium
Please send or fax this card immediately to: (fax: +32.59.255.339)
Philippe Geril
EUROSIS-ETI
Greenbridge NV
Wetenschapspark 1, Plassendale 1, B-8400 Ostend
Belgium